
Produced
by

Department of Computing, Maths & Physics

Waterford Institute of Technology

http://www.wit.ie

http://elearning.wit.ie

Produced
by

Agile Software Development

Eamonn de Leastar (edeleastar@wit.ie)

Dr. Siobhán Drohan (sdrohan@wit.ie)

mailto:edleastar@wit.ie

Open Closed Principle

SOLID Principles

3

• The Single Responsibility Principle 	
• A class should have one, and only one, reason to change.

• The Open Closed Principle 	
• You should be able to extend a classes behavior, without modifying it.

• The Liskov Substitution Principle 	
• Derived classes must be substitutable for their base classes.

• The Interface Segregation Principle
• Make fine grained interfaces that are client specific.

• The Dependency Inversion Principle 	
• Depend on abstractions, not on concretions.

References
± Agile principles, and the fourteen

practices of Extreme Programming
± Spiking, splitting, velocity, and planning

iterations and releases
± Test-driven development, test-first

design, and acceptance testing
± Refactoring with unit testing
± Pair programming
± Agile design and design smells
± The five types of UML diagrams and

how to use them effectively
± Object-oriented package design and

design patterns
± How to put all of it together for a real-

world project

4

Solid on Wikipedia

5http://en.wikipedia.org/wiki/Solid_(object-oriented_design)

http://en.wikipedia.org/wiki/Solid_(object-oriented_design)

Change Happens!

All systems change during their lifecycles. This must
be borne in mind when developing systems expected
to last longer than the first version.”

 	 		 	 	 (Jacobson et al., 1992)

6

Change Strategy

When a single change to a program results in a cascade
of changes to dependent modules:

 -> design exhibits rigidity.

OCP advice:
-> refactor the system so further changes of that

kind will not cause more modifications.

OCP ideal:
-> further changes of that kind are achieved by

adding new code, NOT by changing code that
already exists.

7

8

OCP

± If a single change to a program results in a cascade of changes
to dependent modules:

±program exhibits the undesirable attributes

±program becomes fragile, rigid, unpredictable and unreusable

±OCP states:

±design modules that never change

±when requirements change, you extend the behavior of such
modules by adding new code

±not by changing old code that already works.

SOFTWARE ENTITIES SHOULD BE OPEN FOR EXTENSION BUT
CLOSED FOR MODIFICATION

Source Material (3) - OCP first characterized in OOSC...

± “The book, known among its fans as
"OOSC", presents object technology as
an answer to major issues of software
engineering, with a special emphasis on
addressing the software quality factors of
correctness, robustness, extendibility
and reusability. It starts with an
examination of the issues of software
quality, then introduces abstract data
types as the theoretical basis for object
technology and proceeds with the main
object-oriented techniques: classes,
objects, genericity, inheritance, Design by
Contract,concurrency, and persistence. It
includes extensive discussions of
methodological issues.”

9

http://en.wikipedia.org/wiki/Object-Oriented_Software_Construction
http://en.wikipedia.org/wiki/Open/closed_principle

http://en.wikipedia.org/wiki/Abstract_data_type
http://en.wikipedia.org/wiki/Abstract_data_type
http://en.wikipedia.org/wiki/Class_(object-oriented_programming)
http://en.wikipedia.org/wiki/Object_(computer_science)
http://en.wikipedia.org/wiki/Generic_programming
http://en.wikipedia.org/wiki/Inheritance_(computer_science)
http://en.wikipedia.org/wiki/Design_by_Contract
http://en.wikipedia.org/wiki/Design_by_Contract
http://en.wikipedia.org/wiki/Concurrency_(computer_science)
http://en.wikipedia.org/wiki/Persistence_(computer_science)
http://en.wikipedia.org/wiki/Object-Oriented_Software_Construction
http://en.wikipedia.org/wiki/Open/closed_principle

10

Open and Closed?

±Open For Extension :
±the behavior of the module can be extended
±the module can be made to behave in new and different

ways as the requirements of the application change

±Closed for Modification:
±extending the behaviour of the module does not result in

changes to the source (or binary) code of the module.
±the source code of such a module is inviolate

SOFTWARE ENTITIES SHOULD BE OPEN FOR EXTENSION BUT
CLOSED FOR MODIFICATION

11

Open and Closed?

±Contradiction?
±the normal way to extend the behavior of a module is to

make changes to that module
±a module that cannot be changed is normally thought to

have a fixed behavior

SOFTWARE ENTITIES SHOULD BE OPEN FOR EXTENSION BUT
CLOSED FOR MODIFICATION

12

Example (1)

±Module A is used by client modules B, C, D, which may
themselves have their own clients (E).

13

Example (2)

±A new client – Bx – requires an extended or adapted version of a –
called Ax.

±Further clients of Ax are developed (F, G, I)

14

2 Possible Solutions

Leave A as it is, make a copy,
change the module’s name to
Ax, and perform all the
necessary adaptations on the
new module. With this
technique Ax retains no further
connection to A.

Adapt module A so that it
will offer the extended or
modified functionality
required by the new clients.

Modify

Copy/Paste

15

Modify Solution

Adapt module A so that it
will offer the extended or
modified functionality
required by the new clients.

±A may have been around for a long time and have many clients such as B, C
and D. The adaptations needed to satisfy the new clients’ requirements may
invalidate the assumptions on the basis of which the old ones used A.

±Change to A may start a dramatic series of changes in clients, clients of clients
and so on.

±Nightmare scenario: Entire parts of the software that were supposed to have
been finished and sealed are reopened, triggering a new cycle of
development, testing, debugging and documentation.

Modify

16

Copy/Paste Solution

±On the surface, solution 2 seems better as it does not require
modifying any existing software.

±But this solution may be even more catastrophic since it only
postpones the day of reckoning.

±Leads to an explosion of variants of the original modules, many of
them very similar to each other although never quite identical.

Leave A as it is, make a copy,
change the module’s name to
Ax, and perform all the
necessary adaptations on the
new module. With this
technique Ax retains no further
connection to A. Copy/Paste

17

Copy/Paste Solution Implications

±Abundance of
modules not matched
by abundance of
available functionality

±Many of the apparent
variants being in fact
quasi-clones

±Creates a huge
configuration
management problem

18

OCP Solution – Abstraction, Interfaces & Inheritance

±Using interfaces and inheritance developers can adopt a much
more incremental approach

19

Abstraction
±In Java it is possible to create abstractions that are fixed and yet

represent an unbounded group of possible behaviors:

±Specified as interfaces and abstract classes

±A module can implement these abstractions:

±Can be closed for modification since it fulfils an abstraction that is
fixed.

±Yet the behavior of that module can be extended by creating new
implementations of the abstraction

20

Not Closed

±Both A and B are concrete Java classes, and B uses A.

±To extend the behaviour of A, B must also be changed as it is
directly coupled to A

±A is not “Closed” to modifications - introducing changes to A
ripples through to B

21

Closing A

±IA is defined independently of A

±It is closed for modification.

±A can be:

±Used as is

±Modified

±Extended via inheritance

±Completely replaced

±I.e. => It is open for extension

22

Shape Example

±Application must be able to draw circles and squares on a standard
GUI.

±The circles and squares must be drawn in a particular order.

±A list of the circles and squares will be created in the appropriate
order and the program must walk the list in that order and draw
each circle or square.

23

Procedural Solution - C
±The first element of each is

a type code that identifies
the data structure as either
a circle or a square.

enum ShapeType {circle, square};

struct Shape
{
 ShapeType itsType;
};

struct Circle
{
 ShapeType itsType;
 double itsRadius;
 Point itsCenter;
};

struct Square
{
 ShapeType itsType;
 double itsSide;
 Point itsTopLeft;
};

24

Draw Functions
void DrawSquare(struct Square*)
void DrawCircle(struct Circle*);
typedef struct Shape *ShapePointer;

void DrawAllShapes(ShapePointer list[], int n)
{
 int i;
 for (i=0; i<n; i++)
 {
 struct Shape* s = list[i];
 switch (s->itsType)
 {
 case square: DrawSquare((struct Square*)s);
 break;
 case circle: DrawCircle((struct Circle*)s);
 break;
 }
 }
}

25

Proposed Extension : Triangle

enum ShapeType {circle, square, Triangle}

struct Triangle
{
 Point A;
 Point B;
 Point C;
}
void DrawTriangle(struct Triangle*);

±Open for Extension
±New enum entry and DrawTriangle() function.

26

Open or Closed for Modification?

void DrawSquare(struct Square*)
void DrawCircle(struct Circle*);
typedef struct Shape *ShapePointer;

void DrawAllShapes(ShapePointer list[], int n)
{
 int i;
 for (i=0; i<n; i++)
 {
 struct Shape* s = list[i];
 switch (s->itsType)
 {
 case square: DrawSquare((struct Square*)s);
 break;
 case circle: DrawCircle((struct Circle*)s);
 break;
 }
 }
}

27

DrawAllShapes() violates OCP

±DrawAllShapes() would have to be modified to include new shape
type – not closed for modification.

 struct Shape* s = list[i];
 switch (s->itsType)
 {
 case square: DrawSquare((struct Square*)s);
 break;
 case circle: DrawCircle((struct Circle*)s);
 break;
 case triangle : DrawTriangle (((struct Triangle*)s);
 break
 }

28

Conforming to OCP

±Interface defines
abstraction Shape.

±Circle and Square
implement this abstraction.

interface Shape
{
 void draw();
}

class Circle implements Shape
{
 private double itsRadius;
 private Point itsCenter;
 public void draw()
 { //… }
}

class Square implements Shape
{
 private double itsSide;
 private Point itsTopLeft;
 public void draw()
 { //… }
}

29

drawShapes()

class Canvas
{
 void drawShape (Shape s)
 {
 s.draw();
 }
 void drawShapes (Collection<Shape> shapes)
 {
 for (Shape s:shapes)
 {
 s.draw()
 }
 }
}

30

Open and Closed

±Is Shape interface open to extension?
±Is Canvas closed for these extensions?

class Triangle implements Shape
{
 private Point A;
 private Point B;
 private point C

 public void draw()
 { //… }
}

±Canvas’s behaviour can be extended without modification – it is
closed.

Strategic Closure

±No significant program can be 100% closed.
±Since closure cannot be complete, it must be strategic.
±That is, the designer must choose the kinds of changes

against which to close his/her design.
±This takes a certain amount of foresight derived from

experience
±makes sure that the open-closed principle is invoked for

the most probable changes.

31

OCP Succinctly

±Design modules that never change.

±When requirements change:

±extend the behavior of such modules by adding
new code.

±not by changing old code that already works.

32

