Single Responsibility Principle (SRP)

Produced Eamonn de Leastar (edeleastar@wit.ie)
py: Dr. Siobhan Drohan (sdrohan@wit.ie)

’ Waterford Institute of Technology Department of Computing and Mathematics
f-

- W . INSTITIUID TEICNEOLAIOCHTA PHORT LAIRGE http://www.wit.ie/

“S” in SOLID - Single

Responsibllity

Principle

Every object should have a single responsibility and all of
ts services should be aligned with that responsibility.

“Responsibility” is defined as “a reason to change”

SRP: The Single Responsibility Principle

THERE SHOULD NEVER BE MORE THAN
ONE REASON FOR A CLASS TO CHANGE.

» Each responsibllity is an axis of change.

* When requirements change
—> a change in responsibility amongst the classes.

* [f a class assumes more than one responsibility
-> more than one reason for it to change.

- changes to one responsibility may impair or inhibit the
class’ ability to meet the others.

Single Responsibility Principle — Example 1

Consider a Class that assembles and
prints a report.

The class can be changed for two

reasons. Reporter
+acquireReportDatal()
the content of the report can +assembleReport()
change. +setReportFormat()
+printReport()
the format of the report can

change.

These two things change for very
different causes; one perhaps
substantive, and one cosmetic.

Single Responsibility Principle — Example 1

SRP: these two aspects of the problem are really two
separate responsibilities, and should therefore be In
separate classes:

Report ReportGenerator
' +setReportFormat()
+acquireData() .
+printReport()

SRP: Avoid coupling two things that change for different
reasons at different times.

Single Responsibility Principle — Example 2

* [he Rectangle class has two methods:
® one draws the rectangle on the screen
¢ the other computes the area of the rectangle.

e [Wo applications use this class:

e one application uses Rectangle to help it with the mathematics of
geometric shapes.

¢ the other uses the class to render a Rectangle on a window.

Computational Rectangle Graphical
Geometry = + draw() = A I?cation
Application PP
+ area() : double

GUI =

SRP Violation I

e Rectangle has two responsibilities:
¢ provide a mathematical model of the geometry of a rectangle.
¢ render the rectangle on a graphical user interface.

¢ \iolation of SRP:

¢ the GUI must be included in the in the computational geometry
application.
e the class files for the GUI have to be deployed to the target platform.

e if a change to the Graphical Application causes the Rectangle
to change for some reason, that change may force us to
rebuild, retest, and redeploy the Computational Geometry
Application.

Single Responsibility Principle — Example 2

e Separate the two responsibilities into two separate classes

* Moves the computational portions of Rectangle into the
GeometricRectangle class.

e Now changes made to the way rectangles are rendered
cannot affect the ComputationalGeometry Application.

Computational Graphical
Geometry Lo
Application Application
J/ J/ V
Geometric Rectangle

Rectangle = GUI

+ draw()
+ area() : double

What is a Responsibility”?

e “A reason for change.”

e [f you can think of more than one motive for changing a
class, then that class has more than one responsibllity.

interface Modem
{
void dial (String pno) ;
void hangup() ;
void send(char c);
char recv() ;

Modem Responsibilities

interface Modem

{
void dial (String pno) ;
void hangup() ;
void send(char c);
char recv() ;

e [Wo responsibilities:
e connection management (dial and hangup functions)
e data communication (send and recv functions)
e [hey have little In common
e may change for different reason
e Wil be called from different parts of the applications

e [hey will change for different reasons.

Should the responsibilities be separated?
¢ [{ depends!

e How do you foresee the application changing?

® c.g. could the signature of the connection methods
potentially change, without any change to the
send/receive mechanism?

interface Modem

{
void dial (String pno) ;
void hangup() ;
void send(char c);
char recv() ;

Should the responsibilities be separated?

e [f the application can change in ways that cause the two
responsibilities to change at different times - separate
the responsibilities.

e Separation here is at interface level and not class level.

«interface» «interface»

Data

Channel

+ send(:char)
+ recv() : char

L

Modem
Implementation

Connection

+ dial(pno : String)

+ hangup()

-

e CAUTION: Needless complexity can occur when there is no
foreseeable need to separate the responsibllities.

Single Responsibility Principle — Example 4

e Coupling persistence services (store) with business rules
(calculatePay) could violate SRP.

Employee

+ CalculatePay
+ Store

Separate the Responsibilities

Employee “mployeeD®
+calculatePay() :gﬁ:gmg:gzzzg

Single Responsibility Principle — Example 5

® Design an Application to manage a contact list.

e [t should support:
e Console based Ul
¢ | cad/save to/from a file on disk
e Simple reports and search functions

Contact

AddressBook \

e Propose two classes: \

e Contact - to represent each contact
e AddressBook - to incorporate AddressBook

¢ serialization
® reporting

o Ul

® ciC...

¢ \iolates SRP as AddressBook has multiple reasons to change
e Data structure change (e.g. HashMap to TreeMap)
e Serialization mechanism (e.g. binary to XML)
e Alternative reports (e.g. different formats and content)
e Command line syntax changes

Refactor Addressbook

PimConsoleApp

ISerialization-
Strategy IContact IContactReporter

i 7

I 27

| 7’

I

I

|

PiImConsoleApp = = = = = o= o= o o m IPim | b, e—e—ecccccc———-———— IAddressBook

AddressBook responsible for contact data structure
ContactReporter responsible for format and content of reports
SerializationStrategy responsible for persistence
Pim responsible for binding address book to

serialization mechanism — and for exposing

coherent top level functionality

responsible binding an running application to an

IPim.

Pacemaker-console-solution

controllers

e’ Main

¢ PacemakerAP|

¢ PacemakerConsoleService

T models

o € Activity

L ¢ Location

Lo ¢ User

utils

¢ AsciiTableParser
Console

controllers

JSONSerializer

TimeFormatters

C
C
models utils 1 Serializer
C
c XMLSerializer

controllers

\V
iINnformation models
model for the
app

Pacemaker - package responsiblilities

Application
services + user
iInterface

general purpose
utilities

Pacemaker — Model

models
Location
R0
1 X
1..*
Activity |

User

Pacemaker — Model Responsibllities

Location

R0

1
Represent s
iIndividual Activity
Activities

models

Represent
iINndividual
locations

User

Represent
iIndividual
Users

Pacemaker — Utlls

utils

TimeFormatters

Console

JAN

AsciiTableParser

< <|Interface>>
Serializer

XMLSerializer JSONSerializer

Pacemaker — utils responsibllities

Encapsulate
rendering of

Model elements Is

to a standard
console

TimeFormatters

Console

Centralise
data/time
formatting for
application

JAN

AsciiTableParser

<<Interface>>
Serializer

Encapsulate

data structure |

serialisation

Specialise to use
table btc-ascii
component

XMLSerializer

JSONSerializer

_ Specialise

serialisation

for XML

Specialise
serialisation
for JSON

< <Interface> >
Serializer

Console

User

*
=users ;\

1
o<

cdntrollers

K

X

-serializer

PacemakerAPI

1

-paceApi /.\

a L

K

/
T~
console

PacemakerConsoleService

~jsonSerializ

X

1 \./—x mliSerializer

XMLSerializer

er
>.‘ JSONSerializer
1

User

-users /i\)
cqntrollers '
Implement the
|1 \ core application
Serializer .<-5eria“-’er i PacanakerAP featureS asS
f i represented by the
pacensi Model.
K
-jsonSerializ
Console (& ¥+ PacemakerConsoleService X
console

Deliver a

console user

experience

X

1 \’/—meSeriaIizer

XMLSerializer

er
>.‘ JSONSerializer
1

SRP Summary

°(C
C

hanges in requirements are manifested as changes in
ass responsibllities.

e [herefore a ‘cohesive’ responsibility is a single axis of

change — requirement changes often are restricted to a

few cohesive responsibilities (in a reasonably designed
system).

¢ [hus, to avoid coupling responsibilities that change for

di

ferent reasons, a class should have only one

responsibility, one reason to change.

e \/iolation of SRP causes spurious dependencies between
modules that are hard to anticipate, in other words
fragility.

Single Responsibility Principle

Just because you can doesn’t mean you should.

