
Single Responsibility Principle (SRP)

Produced
by:

Department of Computing and Mathematics
http://www.wit.ie/

Eamonn de Leastar (edeleastar@wit.ie)
Dr. Siobhán Drohan (sdrohan@wit.ie)

“S” in SOLID - Single Responsibility Principle

Every object should have a single responsibility and all of
its services should be aligned with that responsibility.

“Responsibility” is defined as “a reason to change”

SRP: The Single Responsibility Principle
THERE SHOULD NEVER BE MORE THAN

ONE REASON FOR A CLASS TO CHANGE.

• Each responsibility is an axis of change.

• When requirements change
à a change in responsibility amongst the classes.

• If a class assumes more than one responsibility
à more than one reason for it to change.
à changes to one responsibility may impair or inhibit the

class’ ability to meet the others.

Single Responsibility Principle – Example 1

• Consider a Class that assembles and
prints a report.

• The class can be changed for two
reasons.

• the content of the report can
change.

• the format of the report can
change.

• These two things change for very
different causes; one perhaps
substantive, and one cosmetic.

• SRP: these two aspects of the problem are really two
separate responsibilities, and should therefore be in
separate classes:

• SRP: Avoid coupling two things that change for different
reasons at different times.

Single Responsibility Principle – Example 1

Single Responsibility Principle – Example 2
• The Rectangle class has two methods:

• one draws the rectangle on the screen
• the other computes the area of the rectangle.

• Two applications use this class:
• one application uses Rectangle to help it with the mathematics of

geometric shapes.
• the other uses the class to render a Rectangle on a window.

SRP Violation
• Rectangle has two responsibilities:

• provide a mathematical model of the geometry of a rectangle.
• render the rectangle on a graphical user interface.

• Violation of SRP:
• the GUI must be included in the in the computational geometry

application.
• the class files for the GUI have to be deployed to the target platform.

• if a change to the Graphical Application causes the Rectangle
to change for some reason, that change may force us to
rebuild, retest, and redeploy the Computational Geometry
Application.

Single Responsibility Principle – Example 2
• Separate the two responsibilities into two separate classes

• Moves the computational portions of Rectangle into the
GeometricRectangle class.

• Now changes made to the way rectangles are rendered
cannot affect the ComputationalGeometry Application.

What is a Responsibility?
• “A reason for change.”
• If you can think of more than one motive for changing a

class, then that class has more than one responsibility.

interface Modem
{

void dial(String pno);
void hangup();
void send(char c);
char recv();

}

Modem Responsibilities

• Two responsibilities:
• connection management (dial and hangup functions)
• data communication (send and recv functions)

• They have little in common
• may change for different reason
• will be called from different parts of the applications

• They will change for different reasons.

interface Modem
{
void dial(String pno);
void hangup();
void send(char c);
char recv();

}

Should the responsibilities be separated?
• It depends!

• How do you foresee the application changing?
• e.g. could the signature of the connection methods

potentially change, without any change to the
send/receive mechanism?

interface Modem
{
void dial(String pno);
void hangup();
void send(char c);
char recv();

}

Should the responsibilities be separated?
• If the application can change in ways that cause the two

responsibilities to change at different times à separate
the responsibilities.

• Separation here is at interface level and not class level.

• CAUTION: Needless complexity can occur when there is no
foreseeable need to separate the responsibilities.

Single Responsibility Principle – Example 4

• Coupling persistence services (store) with business rules
(calculatePay) could violate SRP.

Separate the Responsibilities

Single Responsibility Principle – Example 5

• Design an Application to manage a contact list.

• It should support:
• Console based UI
• Load/save to/from a file on disk
• Simple reports and search functions

AddressBook
• Propose two classes:

• Contact - to represent each contact
• AddressBook - to incorporate

• serialization
• reporting
• UI
• etc…

• Violates SRP as AddressBook has multiple reasons to change
• Data structure change (e.g. HashMap to TreeMap)
• Serialization mechanism (e.g. binary to XML)
• Alternative reports (e.g. different formats and content)
• Command line syntax changes

Refactor Addressbook

IAddressBook responsible for contact data structure
IContactReporter responsible for format and content of reports
ISerializationStrategy responsible for persistence
IPim responsible for binding address book to

serialization mechanism – and for exposing
coherent top level functionality

PimConsoleApp responsible binding an running application to an
IPim.

Pacemaker-console-solution

Pacemaker - package responsibilities

information
model for the

app general purpose
utilities

Application
services + user

interface

Pacemaker – Model

Represent
individual
locations

Represent
individual
Activities

Represent
individual

Users

Pacemaker – Model Responsibilities

Pacemaker – Utils

Centralise
data/time

formatting for
application

Encapsulate
data structure
serialisation

Specialise
serialisation

for XML

Specialise
serialisation
for JSON

Pacemaker – utils responsibilities

Encapsulate
rendering of

Model elements
to a standard

console

Specialise to use
table btc-ascii
component

Implement the
core application

features as
represented by the

Model.

Deliver a
console user
experience

SRP Summary
• Changes in requirements are manifested as changes in

class responsibilities.
• Therefore a ‘cohesive’ responsibility is a single axis of

change – requirement changes often are restricted to a
few cohesive responsibilities (in a reasonably designed
system).

• Thus, to avoid coupling responsibilities that change for
different reasons, a class should have only one
responsibility, one reason to change.

• Violation of SRP causes spurious dependencies between
modules that are hard to anticipate, in other words
fragility.

