
SOLID Principles

Produced 
by:

Department of Computing and Mathematics
http://www.wit.ie/

Eamonn de Leastar (edeleastar@wit.ie) 
Dr. Siobhán Drohan (sdrohan@wit.ie) 



SOLID Class Design Principles

In the mid-1990s, Robert C. 
Martin gathered five principles 
for object-oriented class design, 
presenting them as the best 
guidelines for building a 
maintainable object oriented 
system. 

Michael Feathers attached the acronym SOLID 
to these principles in the early 2000s.



SOLID Class Design Principles
S Single Responsibility Principle (SRP). Classes should have one, and only 

one, reason to change. Keep your classes small and single-purposed.

O Open-Closed Principle (OCP). Design classes to be open for extension but 
closed for modification; you should be able to extend a class without 
modifying it. Minimize the need to make changes to existing classes.

L Liskov Substitution Principle (LSP). Subtypes should be substitutable for 
their base types. From a client’s perspective, override methods shouldn’t 
break functionality.

I Interface Segregation Principle (ISP). Clients should not be forced to 
depend on methods they don’t use. Split a larger interface into a number of 
smaller interfaces.

D Dependency Inversion Principle (DIP). High-level modules should not 
depend on low-level modules; both should depend on abstractions. 
Abstractions should not depend on details; details should depend on 
abstractions. 



SOLID Principles in Poster form…

SOLID Motivational Posters, by Derick Bailey, is 
licensed under a Creative Commons Attribution-

Share Alike 3.0 United States License.

http://blogs.msdn.com/b/cdndevs/archive/2009/07/15/the-solid-
principles-explained-with-motivational-posters.aspx







“S” in SOLID - Single Responsibility Principle

Every object should have a single responsibility and all of 
its services should be aligned with that responsibility. 

“Responsibility” is defined as “a reason to change”





“O” in SOLID - Open-Closed Principle

Software entities – such as classes, modules, or functions 
should be open for extension but closed for modification. 

Better to make changes to classes by adding to or building 
on them (using mechanisms like subclassing or 
polymorphism) rather than modifying their code.





“L” in SOLID - Liskov Substitution Principle

Subclases should be substitutable for the classes from 
which they were derived. 

For example, if ASCIITableConsole is a subclass of 
Console, you should be able to replace Console with 

ASCIITableConsole without any significant side effects.





“I” in SOLID - Interface Segregation Principle

Many client specific interfaces are better than one general 
purpose interface. 

Make fine grained interfaces that are client specific.





“D” in SOLID - Dependency Inversion Principle

High-level modules shouldn’t depend on low-level modules, 
but both should depend on shared abstractions. 

In addition, abstractions should not depend on details –
instead, details should depend on abstractions.

Depend on abstractions, not on concretions.




