
C.O.R.R.E.C.T.

Produced
by:

Department of Computing and Mathematics
http://www.wit.ie/

Eamonn de Leastar (edeleastar@wit.ie)
Dr. Siobhán Drohan (sdrohan@wit.ie)

C.O.R.R.E.C.T Thinking

C.O.R.R.E.C.T.
acronym can help you

think about the
boundary conditions
to consider for your

unit tests.

Source Code: https://pragprog.com/titles/utj2/source_code

C.O.R.R.E.C.T.

• Conformance - Does the value conform to an expected format?

• Ordering - Is the set of values ordered or unordered as appropriate?

• Range - Is the value within reasonable minimum and maximum values?

• Reference - Does the code reference anything external that isn't under
direct control of the code itself?

• Existence - Does the value exist (e.g. non-null, nonzero, present in a set,
etc.)?

• Cardinality - Are there exactly enough values?

• Time - (absolute and relative) Is everything happening in order? At the
right time? In time?

5

C.O.R.R.E.C.T Thinking

• For each of the CORRECT criteria, consider the impact
of data from all possible origins.

• The underlying question to be constantly considered
is:

• What can go wrong?

• Once you think of something that could go wrong,
write a test for it. Once that test passes, again ask

• What else can go wrong?

[C].O.R.R.E.C.T – [C]onformance

• When data in a specific format is expected à consider what will happen if the
data does not conform to the structure.

• e.g. an email address :

name@somewhere.com
firstname.lastname@subdomain.somewhere.com
firstname.lastname%somewhere@subdomain.somewhere.com
firstname

• How will code react to each of these?

• Similarly, if code is producing data to a specific format, tests must verify that
the generated data conforms to desired format.

7

C.[O].R.R.E.C.T –
[O]rdering

• Position of one piece of
data within a larger
collection.

• A search routine should be
tested for conditions where
the search target is first or
last.

• For a sort routine, what
might happen if the set of
data is already ordered? Or
sorted in precisely reverse
order?

8

public void testOrder ()
{

assertEquals(9, Largest.largest(new int[] { 9, 8, 7 }));
assertEquals(9, Largest.largest(new int[] { 8, 9, 7 }));
assertEquals(9, Largest.largest(new int[] { 7, 8, 9 }));

}

public void testDups ()
{

assertEquals(9, Largest.largest(new int[] { 9, 7, 9, 8 }));
}

public void testOne ()
{

assertEquals(1, Largest.largest(new int[] { 1 }));
}

public void testNegative ()
{

int[] negList = new int[] { -9, -8, -7 };
assertEquals(-7, Largest.largest(negList));

}

public void testEmpty ()
{

try
{

Largest.largest(new int[] {});
fail("Should have thrown an exception");

}
catch (RuntimeException e)
{

assertTrue(true);
}

}

C.O.[R].R.E.C.T – [R]ange – Example
• A variable's primitive type may allow it to take on a wider range of values

than needed e.g. int age.
• Consider not using primitive types to store bounded-integer values e.g.

direction of travel à Bearing.
• Encapsulating a bearing within a class enables you to constrain its range at

one point in the system i.e. you can filter out bad data.

9

public class Bearing
{
public static final int MAX = 359;
private int value;

public Bearing(int value)
{
if (value < 0 || value > MAX) throw new BearingOutOfRangeException();
this.value = value;

}

public int value() { return value; }

public int angleBetween(Bearing bearing)
{
return value - bearing.value;

}
}

10

public class BearingTest
{

@Test(expected=BearingOutOfRangeException.class)
public void throwsOnNegativeNumber()
{

new Bearing(-1);
}

@Test(expected=BearingOutOfRangeException.class)
public void throwsWhenBearingTooLarge()
{

new Bearing(Bearing.MAX + 1);
}

@Test
public void answersValidBearing()
{

assertThat(new Bearing(Bearing.MAX).value(), equalTo(Bearing.MAX));
}

@Test
public void answersAngleBetweenItAndAnotherBearing()
{

assertThat(new Bearing(15).angleBetween(new Bearing(12)), equalTo(3));
}

@Test
public void angleBetweenIsNegativeWhenThisBearingSmaller()
{

assertThat(new Bearing(12).angleBetween(new Bearing(15)), equalTo(-3));
}

}

C.O.R.[R].E.C.T – [R]eference

• What things does the method-under-test reference that are outside the scope
of the method itself?

• external dependencies

• object state

• other conditions

• e.g.

• a method in a web application to display a customer's account history
might require that the customer is first logged on.

• the method pop() for a stack requires a nonempty stack.

• shifting the transmission in a car to Park from Drive requires that the car is
stopped.

11

C.O.R.[R].E.C.T
– [R]eference

• If assumptions are made
about:

• the state of the class,

• the state of other
objects,

• the global application,

• Then you need to verify
your code is well-behaved
if these
assumptions/conditions
are not met.

12

@Test
public void remainsInDriveAfterAcceleration()
{
transmission.shift(Gear.DRIVE);
car.accelerateTo(35);
assertThat(transmission.getGear(),

equalTo(Gear.DRIVE));
}

@Test
public void ignoresShiftToParkWhileInDrive()
{

transmission.shift(Gear.DRIVE);
car.accelerateTo(30);
transmission.shift(Gear.PARK);
assertThat(transmission.getGear(),

equalTo(Gear.DRIVE));
}

@Test
public void allowsShiftToParkWhenNotMoving()
{

transmission.shift(Gear.DRIVE);
car.accelerateTo(30);
car.brakeToStop();
transmission.shift(Gear.PARK);
assertThat(transmission.getGear(),

equalTo(Gear.PARK));
}

C.O.R.R.[E].C.T – [E]xistence

• Make sure the method under test can stand up to nothing!

Network resource
files
URLs
license keys
users
printers…

• may all disappear without notice.

• Many Java library methods will throw an exception of some sort when faced
with non-existent data.

• Difficulty: hard to debug a generic runtime exception; but easier when your
exceptions report a specific message!

• Should unit test with plenty of nulls, zeros, empty strings etc...

13

C.O.R.R.E.[C].T – [C]ardinality

Riddle: You have to erect a number of fence sections
to cover a straight line 12 feet long. Each section of
fencing covers 3 feet, and each end of a section must
be held up with a fence post:

How many fence posts do you need?
14

feet

C.O.R.R.E.[C].T – [C]ardinality

• This problem, and the related common errors, come up so
often that they are graced with the name “fencepost errors” or
“off-by-one errors”

15

C.O.R.R.E.[C].T – [C]ardinality

• Related to CORR[E]CT: Existence i.e. how to make sure there are exactly as
many items as needed.

• The count of some set of values is most interesting in these three cases:

• 1. Zero

• 2. One

• 3. More than one

• It's called the “0-1-n-Rule” and it's based on the premise that if method can
handle more than one of something, it can probably handle 10, 20, or 1,000.

• Sometimes n may be significant -

• top 10 results

• leading 100 users

16

C.O.R.R.E.[C].T – [C]ardinality

Example: If maintaining a top 10 list of items, tests should consider:

• Producing a report when:
• there are no items in the list (zero)
• there’s only one item in the list (one)
• there aren’t yet ten items in the list (many)

• Adding an item when:
• there are no items in the list (zero)
• there’s only one item in the list (one)
• there aren’t yet ten items in the list (many)
• there are already ten items in the list (many boundary)

17

C.O.R.R.E.C.[T] – [T]ime

• You need to keep several aspects of time in mind:

• Relative time (ordering in time)

• Absolute time (elapsed and wall clock)

• Concurrency issues

18

C.O.R.R.E.C.[T] – [T]ime –
Relative ordering in time

• Some interfaces are inherently stateful:

• login() will be called before logout().

• prepareStatement() is called before executeStatement().

• connect() before read() which is before close().

• Test calling methods out of the expected order try skipping the first, last and
middle of a sequence (i.e. C[O]RRECT – [O]rdering).

• Relative time can include timeout issues:

• How long your code is willing to wait for a resource to become available.

• What happens in your code if the resource never becomes available?

19

C.O.R.R.E.C.[T] – [T]ime - Absolute

The actual elapsed or “wall clock” time:

• Elapsed time: when waiting for a resource, is the elapsed time too long?

• Wall Clock time: Most of the time, this makes no difference. However,
occasionally, the actual time of day will matter.

• e.g.: Question: every day of the year is 24 hours long? - true or false?

20

C.O.R.R.E.C.[T] – [T]ime - Absolute

• Answer: It Depends!

• In UTC (Universal Coordinated Time, the modern version of Greenwich Mean
Time, or GMT), the answer is TRUE.

• In areas of the world that does not observe Daylight Savings Time (DST), the
answer is TRUE.

• In most of the U.S. (which does observe DST), the answer is FALSE.

• In April, you'll have a day with 23 hours (spring forward) and in October
you'll have a day with 25 (fall back).

• This means that arithmetic won't always work as you expect two days in
the year (you need to test on these two boundary days):

• 1:45AM plus 30 minutes might equal 1:15AM, rather than 2:15AM.

21
Question: every day of the year is 24 hours long? - true or false?

C.O.R.R.E.C.[T] – [T]ime - Concurrency

• What will happen if multiple threads use this same object at the same time?

• Are there global or instance level data or methods that need to be
synchronized?

• How about external access to files or hardware?

• If you have concurrency needs, you need to write tests that demonstrate the
use of multiple client threads.

22

