C.0.R.R.E.C.T.

Produced Eamonn de Leastar (edeleastar@wit.ie)

by:
’ Dr. Siobhan Drohan (sdrohan@uwit.ie)

Waterford Institute of Technology Department of Computing and Mathematics

Y5 INSTITIUID TEICNEOLAIOCHTA PHORT LAIRGE http://www.wit.ie/
Q=

TDD Introduction

Write a — Make
failing the test
test pass

Refactor

Test Driven Development has
been among the most influential
approaches in recent software
engineering history. Here we look
at its origins, principles and some
of the important benefits of the
approach.

First Tests

‘o unit 83 Lfg Hcenrchng?; Oudme[-

’ -
| Finished after 1.257 seconds b d

AR ..

Runs: 2/2 Errors: 0 8 Fallures: 0

t —
g]ttstkdt com.palantir.biog :)r:.((;;sr;,\\r,jvn

EKQSIS'\UIGWD com. palantir blog.processsps

The essential elements of TDD are
fairly easy to grasp. The support
libraries (xUnit) are relatively
straightforward, and we can
expect our IDE to provide direct
assistance to using these libraries.
Here we look at the facilities
Eclipse provides to the JUnit
library.

Writing Tests

TestAccount, java

Account. java

testCreateAccount()
testCreateAccetDef() o createAccount(
testCreateAcctDup() ___|
[Delivered)
Internal Only)

A review of the basic structure of
JUnit based tests, elaborating on
the primary assert calls and
annotations.

Pragmatic Testing
Stack Example

One way of becoming familiar
with TDD is to explore some
simple examples of various

strategies that might be employed
in some simple examples. Here
we look the evolution of a simple
Stack class.

Pragmatic Testing
Video Player
Example

Another worked example, this
time a simple video player
manager class. These examples
give us a feel for simple strategies
in evolving unit tests.

Right BICEP

Guidelines for Composing Tests
phrased using the acronym: -
Right, Boundary, Inverse, Cross-
check, Errors & Performance.

C.O.R.R.E.C.T Thinking

C.O.R.R.E.C.T.
acronym can help you
think about the
boundary conditions
to consider for your
unit tests.

The
atic

ogramimers

Pra§matic Unit Testing
in Java 8 with JUnit

Jeff Langr

with Andy Hunt
& Dave Thomas

edited by

L 6F : -. /
£ i 0,
==t Era e\ T »
Susannah Davidson Pfalzer i 68 £ 40 -7, 15

Source Code: https://pragprog.com/titles/utj2/source code

C.0O.R.

E.C.T.

Conformance - Does the value conform to an expected format?

Ordering
Range

Reference

Existence

Cardinality

Time

- Is the set of values ordered or unordered as appropriate?
- Is the value within reasonable minimum and maximum values?

- Does the code reference anything external that isn't under
direct control of the code itself?

- Does the value exist (e.g. non-null, nonzero, present in a set,
etc.)?

- Are there exactly enough values?

- (absolute and relative) Is everything happening in order? At the
right time? In time?

C.0O.R.

« For each of the CORRECT criteria, consider the impact

at

=.C. T Thinking

of data from all possible origins.

» The underlying question to be constantly considered

IS

« What can go wrong?

+ Once you think of something that could go wrong,
write a test for it. Once that test passes, again ask

* What else can go wrong?

Conformance

Ordering

Range

Reference

Existence

 Cardinality

* Time

[C].O0.R.R.E.C.T — [Clonformance

- When data in a specific format is expected - consider what will happen if the
data does not conform to the structure.

* e.g. an email address :

name@somewhere.com
firstname.lasthame@subdomain.somewhere.com
firsthame.lasthame%somewhere@subdomain.somewhere.com

firsthame

« How will code react to each of these?

- Similarly, if code is producing data to a specific format, tests must verify that
the generated data conforms to desired format.

=.C.T —

C.[O].R.R.
[O]rdering

 Position of one piece of
data within a larger
collection.

« A search routine should be
tested for conditions where
the search target is first or
last.

 For a sort routine, what
might happen if the set of
data is already ordered? Or
sorted in precisely reverse
order?

public void testOrder ()
{

assertEquals(9, Largest.largest(new
assertEquals(9, Largest.largest(new
assertEquals(9, Largest.largest(new

¥

public void testDups ()
{

assertEquals(9, Largest.largest(new

¥

public void testOne ()
{

assertEquals(1l, Largest.largest(new

¥

public volid testNegative ()

{
int[] negList = new int[] { -9, -8,

intll] {9, 7,

intl] {1 }));

-7 };

assertEquals(-7, Largest.largest(neglList));

}

public void testEmpty (O

{
try

{
Largest.largest(new int[] {});

fail("Should have thrown an exception");

}

catch (RuntimeException e)

{

assertTrue(true);

¥
¥

7 1);
7 1));
9 1);

9, 8 1))

C.O.[R].R.E.C.T = [R]ange — Example

« A variable's primitive type may allow it to take on a wider range of values
than needed e.g. int age.

« Consider not using primitive types to store bounded-integer values e.g.
direction of travel - Bearing.

* Encapsulating a bearing within a class enables you to constrain its range at
one point in the system i.e. you can filter out bad data.

public class Bearing

{
public static final int MAX = 359;

private int value;

public Bearing(int value)

{
1f (Cvalue < 0 || value > MAX) throw new BearingOutOfRangeException();
this.value = value;

}

public int value() { return value; }

public int angleBetween(Bearing bearing)

{

return value - bearing.value;

¥

ks

public class BearingTest

{
@Test(expected=BearingOutOfRangeException.class)

public void throwsOnNegativeNumber()

{

}

@Test(expected=BearingOutOfRangeException.class)
public void throwsWhenBearingToolLarge()

new Bearing(-1);

{
new Bearing(Bearing.MAX + 1);
3
@Test
public void answersValidBearing()
{
assertThat(new Bearing(Bearing.MAX).value(), equalTo(Bearing.MAX));
3
@Test
public void answersAngleBetweenItAndAnotherBearing()
{
assertThat(new Bearing(15).angleBetween(new Bearing(12)), equalTo(3));
}
@Test

public void angleBetweenIsNegativeWhenThisBearingSmaller()

{
¥

assertThat(new Bearing(12).angleBetween(new Bearing(15)), equalTo(-3));

10

C.O.R]

3.

“CT -]

Rleference

- What things does the method-under-test reference that are outside the scope
of the method itself?

- external dependencies

* object state

« other conditions

. e.g.

- a method in a web application to display a customer's account history
might require that the customer is first logged on.

- the method pop() for a stack requires a nonempty stack.

- shifting the transmission in a car to Park from Drive requires that the car is

stopped.

11

C.O.R.[R].E.C.T
— [R]eference

» If assumptions are made
about:

- the state of the class,

* the state of other
objects,

» the global application,

* Then you need to verify
your code is well-behaved
iIf these
assumptions/conditions
are not met.

@Test
public void remainsInDriveAfterAcceleration()
{
transmission.shift(Gear.DRIVE);
car.accelerateTo(35);
assertThat(transmission.getGear(),
equalTo(Gear.DRIVE));

h

@Test

public void 1ignoresShiftToParkWhileInDrive()

{
transmission.shift(Gear.DRIVE);
car.accelerateTo(30);
transmission.shift(Gear.PARK);
assertThat(transmission.getGear(),

equalTo(Gear.DRIVE));

h

@Test

public void allowsShiftToParkWhenNotMoving()

{
transmission.shift(Gear.DRIVE);
car.accelerateTo(30);
car.brakeToStop();
transmission.shift(Gear.PARK);
assertThat(transmission.getGear(),

equalTo(Gear.PARK));

C.0O.R.R.[E].C.T — [E]xistence

* Make sure the method under test can stand up to nothing!

Network resource
files

URLs

license keys
users

printers...

- may all disappear without notice.

- Many Java library methods will throw an exception of some sort when faced
with non-existent data.

- Difficulty: hard to debug a generic runtime exception; but easier when your
exceptions report a specific message!

- Should unit test with plenty of nulls, zeros, empty strings etc...

13

C.O.R.R.E.[C].T — [Clardinality

Riddle: You have to erect a number of fence sections
to cover a straight line 12 feet long. Each section of
fencing covers 3 feet, and each end of a section must
be held up with a fence post:

N —
How many fence posts do you need?

14

C.0.

R.R.E.[C].T — [Clardinality

—_— — —_— —_— —

}1— ------------------------- 12 feet--——-——-—--—--———- AD‘

 This problem, and the related common errors, come up so
often that they are graced with the name “fencepost errors” or
“off-by-one errors”

15

C.O.R.R.E.[C].T — [Clardinality

- Related to CORR[E]CT: Existence i.e. how to make sure there are exactly as
many items as needed.

« The count of some set of values is most interesting in these three cases:
« 1. Zero
« 2. One
+ 3. More than one

- It's called the “0-1-n-Rule” and it's based on the premise that if method can
handle more than one of something, it can probably handle 10, 20, or 1,000.

« Sometimes n may be significant -
 top 10 results

* leading 100 users

16

C.O.R.R.E.[C].T — [Clardinality

Example: If maintaining a top 10 list of items, tests should consider:

* Producing a report when:
- there are no items in the list (zero)

- there’s only one item in the list (one)

* there aren’t yet ten items in the list (many)

« Adding an item when:
- there are no items in the list (zero)
- there’s only one item in the list (one)
* there aren’t yet ten items in the list (many)

» there are already ten items in the list (many boundary)

C.O.R.R.E.C.[T] = [T]ime

* You need to keep several aspects of time in mind:

 Relative time (ordering in time)

- Absolute time (elapsed and wall clock)

- Concurrency issues

C.O.R.R.E.C.[T] = [T]ime -
Relative ordering in time

« Some interfaces are inherently stateful:
- login() will be called before logout().
- prepareStatement() is called before executeStatement).

- connect() before read() which is before close().

 Test calling methods out of the expected order try skipping the first, last and
middle of a sequence (i.e. C[OJRRECT - [O]rdering).

 Relative time can include timeout issues:
- How long your code is willing to wait for a resource to become available.

- What happens in your code if the resource never becomes available?

19

C.O.R.R.E.C.[T] = [T]ime - Absolute

The actual elapsed or “wall clock” time:

- Elapsed time: when waiting for a resource, is the elapsed time too long?

- Wall Clock time: Most of the time, this makes no difference. However,
occasionally, the actual time of day will matter.

* e.g.: Question: every day of the year is 24 hours long? - true or false?

C.O.R.R.E.C.[T] = [T]ime - Absolute

« Answer: It Depends!

 In UTC (Universal Coordinated Time, the modern version of Greenwich Mean
Time, or GMT), the answer is TRUE.

- In areas of the world that does not observe Daylight Savings Time (DST), the
answer is TRUE.

 In most of the U.S. (which does observe DST), the answer is FALSE.

- In April, you'll have a day with 23 hours (spring forward) and in October
you'll have a day with 25 (fall back).

» This means that arithmetic won't always work as you expect two days in
the year (you need to test on these two boundary days):

* 1:45AM plus 30 minutes might equal 1:15AM, rather than 2:15AM.

21
Question: every day of the year is 24 hours long? - true or false?

C.O0.R.R.E.C.[T] = [T]ime - Concurrency

- What will happen if multiple threads use this same object at the same time?

 Are there global or instance level data or methods that need to be
synchronized?

« How about external access to files or hardware?

* If you have concurrency needs, you need to write tests that demonstrate the
use of multiple client threads.

22

