
Java language evolution (JDK 7 – 9)

Produced

by:

Department of Computing and Mathematics

http://www.wit.ie/

Dr. Siobhán Drohan (sdrohan@wit.ie)

Eamonn de Leastar (edeleastar@wit.ie)

mailto:sdrohan@wit.ie
mailto:edeleastar@wit.ie

Java 7 – an outline of some changes

• Can now switch on Strings.

• Inclusion of try-with-resources.

• Multi-catch.

• Improved type inference.

• More new I/O APIs for the Java platform.

RECAP - switch control statement

Pre Java 7: can switch on int and char.
Post Java 7: can also switch on String

RECAP - try-with-resources

• Introduced in Java 7.

• It is a try statement that declares one or more resources.

• A resource is an object that must be closed after the

program is finished with it.

• The try-with-resources statement ensures that each

resource is closed at the end of the statement.

RECAP - try-with-resources

static String readFirstLineFromFile(String path) throws IOException {

//try-with-resources, Java 7. br will be closed regardless of

//whether the try statement completes normally or abruptly

try (BufferedReader br = new BufferedReader(new FileReader(path))) {

return br.readLine();

}

}

static String readFirstLineFromFile(String path) throws IOException {

BufferedReader br = new BufferedReader(new FileReader(path));

//try with a finally block, pre Java 7.

try {

return br.readLine();

}

finally {

if (br != null)

br.close();

}

}

RECAP - try-with-resources

•A try-with-resources statement can have catch and
finally blocks just like an ordinary try statement.

•In a try-with-resources statement, any catch or
finally block is run after the resources declared have
been closed.

•All classes implementing the java.lang.AutoCloseable
interface can be used inside the try-with-resources

construct.

RECAP - Multiple Exception Handling

• In Java 7 and later, you can catch more than one type of

exception with one exception handler i.e.

• A single catch block can handle more than one type of exception.

This feature can reduce code duplication and lessen the temptation

to catch an overly broad exception.

RECAP - Multiple Exception Handling

• In Java 7 and later, you can catch more than one type of

exception with one exception handler i.e.

• A single catch block can handle more than one type of exception.

This feature can reduce code duplication and lessen the temptation

to catch an overly broad exception.

catch (IOException|SQLException ex) {
logger.log(ex);
throw ex;

}

In the catch clause, specify the types of exceptions that block can

handle, and separate each exception type with a vertical bar (|).

RECAP - Type Inference

11

Since Java 7, type inference applies to collections (<>) i.e.:

Map<String, String> myMap = new HashMap<>();

<> is required.

More new I/O APIs for the Java platform.

• Most important package:

• java.nio.file which contains many practical file utilities, new file I/O

related classes and interfaces.

• We will briefly look at:

• java.nio.file.Path (interface)

• java.nio.file.Files (class)

https://jaxenter.com/java-7-the-top-8-features-103625.html

https://jaxenter.com/java-7-the-top-8-features-103625.html

java.nio.file.Path (interface)

import java.nio.file.Path;

import java.nio.file.Paths;

public class PathExample {

public static void main(String[] args) {

Path path = Paths.get("c:\\data\\myfile.txt");

}

}

http://tutorials.jenkov.com/java-nio/path.html

A Java Path instance represents a path in the file system. A path can
point to either a file or a directory. A path can be absolute or relative.
Basically, this interface can be used in place of the java.io.File class.

http://tutorials.jenkov.com/java-nio/path.html

java.nio.file.Files (class)

This class consists exclusively of static methods that operate on files,
directories, or other types of files.

It contains over 50 utility methods for File related operations which many
developers would have wanted to be a part of earlier Java releases e.g.:

• copy() – copy a file, with options e.g. REPLACE_EXISTING.

• move() – move or rename a file to a target file.

• newInputStream() – Opens a file, returning an input stream to read from the
file.

• readAllBytes() – Reads all the bytes from a file.

https://jaxenter.com/java-7-the-top-8-features-103625.html

https://jaxenter.com/java-7-the-top-8-features-103625.html

Java 8 - an outline of some changes

• Interfaces – default and static methods

• Lambdas

• Stream collection types (and new method

reference, ::)

• Date/time improvements

• Optionals

17

RECAP:
What is an
interface?

Defining Interfaces (JDK 7)
Only abstract methods

public interface IAddressBook

{

void clear();

IContact getContact(String lastName);

void addContact(IContact contact);

int numberOfContacts();

void removeContact(String lastName);

String listContacts();

}

Methods are
implicitly public and

abstract

IAddressBook.java

18

Defining Interfaces (JDK 8)
Can include default methods

public interface IAddressBook

{

void clear();

IContact getContact(String lastName);

void addContact(IContact contact);

int numberOfContacts();

void removeContact(String lastName);

String listContacts();

default String typeOfEntity(){

return “Address book”;

}

}

Java 8 introduced default
methods as a way to
extend Interfaces in a

backward compatible way.

They can be overridden in
implementation classes.

IAddressBook.java
19

Defining Interfaces (JDK 8)
Can include static methods

public interface IAddressBook{

static final int CAPACITY= 1000;

void clear();

IContact getContact(String lastName);

void addContact(IContact contact);

int numberOfContacts();

void removeContact(String lastName);

String listContacts();

default String typeOfEntity(){

return “Address book”;

}

static int getCapacity(){

return CAPACITY;

}

}

Java 8 allows static
methods as a way to

organise utility methods in a
convenient location.

They cannot be overridden
in implementation classes.

IAddressBook.java

Lambdas – new in JDK 8

• A Java lambda expression:

• Is Java's first step into functional programming.

• Is a function which can be created without

belonging to any class.

• Can be passed around as if it was an object and

executed on demand.

http://tutorials.jenkov.com/java/lambda-expressions.html

http://tutorials.jenkov.com/java/lambda-expressions.html

Lambdas - Anonymous Inner Classes

• In Java, anonymous inner classes provide a way to implement

classes that may occur only once in an application.

• Rather than writing a separate event-handling class for each

event, you can write something like this.

http://www.oracle.com/webfolder/technetwork/tutorials/obe/java/Lambda-QuickStart/index.html

JButton testButton = new JButton("Test Button");

testButton.addActionListener(new ActionListener(){

@Override public void actionPerformed(ActionEvent e){

System.out.println("Click Detected by Anon Class");

}

});

http://www.oracle.com/webfolder/technetwork/tutorials/obe/java/Lambda-QuickStart/index.html

Lambdas - Functional Interfaces

http://www.oracle.com/webfolder/technetwork/tutorials/obe/java/Lambda-QuickStart/index.html

package java.awt.event;

import java.util.EventListener;

public interface ActionListener extends EventListener {

public void actionPerformed(ActionEvent e);

}

JButton testButton = new JButton("Test Button");

testButton.addActionListener(new ActionListener(){

@Override public void actionPerformed(ActionEvent e){

System.out.println("Click Detected by Anon Class");

}

});

The code that defines

the ActionListener is a

functional interface

i.e. one abstract

method.

http://www.oracle.com/webfolder/technetwork/tutorials/obe/java/Lambda-QuickStart/index.html

Lambdas - Syntax

Can be either a

single expression or

a statement block.

Body is evaluated
and returned.

Expression takes two

integer arguments,
named x and y, and uses

the expression form to
return x+y.

http://www.oracle.com/webfolder/technetwork/tutorials/obe/java/Lambda-QuickStart/index.html

http://www.oracle.com/webfolder/technetwork/tutorials/obe/java/Lambda-QuickStart/index.html

Lambdas - Example

testButton.addActionListener(e -> System.out.println("Click Detected

by Lambda Listner"));

JButton testButton = new JButton("Test Button");

testButton.addActionListener(new ActionListener(){

@Override public void actionPerformed(ActionEvent e){

System.out.println("Click Detected by Anon Class");

}

});

becomes

http://www.oracle.com/webfolder/technetwork/tutorials/obe/java/Lambda-QuickStart/index.html

http://www.oracle.com/webfolder/technetwork/tutorials/obe/java/Lambda-QuickStart/index.html

Stream

A stream

• represents a sequence of objects from an input
source, which supports aggregate operations e.g.

• filter, reduce, find, match, etc..

• takes collections, arrays and I/O sources as input.

https://www.tutorialspoint.com/java8/java8_streams.htm

https://www.tutorialspoint.com/java8/java8_streams.htm

Stream – for each

• Stream has provided a new method ‘forEach’ to iterate each

element of the stream.

• The following code segment shows how to print 10 random
numbers using forEach over an IntStream.

https://www.tutorialspoint.com/java8/java8_streams.htm

Random random = new Random();
random.ints().limit(10).forEach(System.out::println);

ints() returns an unlimited IntStream of random int values.

https://www.tutorialspoint.com/java8/java8_streams.htm

Stream – for each

• Stream has provided a new method ‘forEach’ to iterate each

element of the stream.

• The following code segment shows how to print 10 random
numbers using forEach over an IntStream.

https://www.tutorialspoint.com/java8/java8_streams.htm

Random random = new Random();
random.ints().limit(10).forEach(System.out::println);

limit(10) returns an IntStream with 10 entries.

https://www.tutorialspoint.com/java8/java8_streams.htm

Stream – for each

• Stream has provided a new method ‘forEach’ to iterate each

element of the stream.

• The following code segment shows how to print 10 random
numbers using forEach over an IntStream.

https://www.tutorialspoint.com/java8/java8_streams.htm

Random random = new Random();
random.ints().limit(10).forEach(System.out::println);

forEach() performs an action for each element in the

IntStream

https://www.tutorialspoint.com/java8/java8_streams.htm

Stream – for each

• Stream has provided a new method ‘forEach’ to iterate each

element of the stream.

• The following code segment shows how to print 10 random
numbers using forEach over an IntStream.

https://www.tutorialspoint.com/java8/java8_streams.htm

Random random = new Random();
random.ints().limit(10).forEach(System.out::println);

Method reference (::) here refers to the static method

println within the containing class. More information here:
https://docs.oracle.com/javase/tutorial/java/javaOO/methodreferences.html

https://www.tutorialspoint.com/java8/java8_streams.htm
https://docs.oracle.com/javase/tutorial/java/javaOO/methodreferences.html

Stream – map

• The ‘map’ method is used to map each element to its

corresponding result.

• The following code segment prints unique squares of numbers

using map.

https://www.tutorialspoint.com/java8/java8_streams.htm

List<Integer> numbers = Arrays.asList(3, 2, 2, 3, 7, 3, 5);

//get list of unique squares
List<Integer> squaresList =

numbers.stream().map(i -> i*i).distinct().collect(Collectors.toList());

stream() returns a sequential Stream of the numbers collection.

https://www.tutorialspoint.com/java8/java8_streams.htm

Stream – map

• The ‘map’ method is used to map each element to its

corresponding result.

• The following code segment prints unique squares of numbers

using map.

https://www.tutorialspoint.com/java8/java8_streams.htm

List<Integer> numbers = Arrays.asList(3, 2, 2, 3, 7, 3, 5);

//get list of unique squares
List<Integer> squaresList =

numbers.stream().map(i -> i*i).distinct().collect(Collectors.toList());

map() returns a Stream consisting of the results of applying the given

function to the elements of the numbers collection.

https://www.tutorialspoint.com/java8/java8_streams.htm

Stream – map

• The ‘map’ method is used to map each element to its

corresponding result.

• The following code segment prints unique squares of numbers

using map.

https://www.tutorialspoint.com/java8/java8_streams.htm

List<Integer> numbers = Arrays.asList(3, 2, 2, 3, 7, 3, 5);

//get list of unique squares
List<Integer> squaresList =

numbers.stream().map(i -> i*i).distinct().collect(Collectors.toList());

map() returns a Stream consisting of distinct elements in the Stream

(uses Objects.equals(Object)).

https://www.tutorialspoint.com/java8/java8_streams.htm

Stream – map

• The ‘map’ method is used to map each element to its

corresponding result.

• The following code segment prints unique squares of numbers

using map.

https://www.tutorialspoint.com/java8/java8_streams.htm

List<Integer> numbers = Arrays.asList(3, 2, 2, 3, 7, 3, 5);

//get list of unique squares
List<Integer> squaresList =

numbers.stream().map(i -> i*i).distinct().collect(Collectors.toList());

collect() returns a mutable list of the elements in the Stream.

https://www.tutorialspoint.com/java8/java8_streams.htm

Stream – filter

• The ‘filter’ method is used to eliminate elements based

on a criteria.

• The following code segment prints a count of empty
strings using filter.

https://www.tutorialspoint.com/java8/java8_streams.htm

List<String> strings = Arrays.asList("abc", "", "bc", "efg", "abcd","", "jkl");

//get count of empty string
int count = strings.stream().filter(string -> string.isEmpty()).count();

stream() returns a sequential Stream of the strings collection

https://www.tutorialspoint.com/java8/java8_streams.htm

Stream – filter

• The ‘filter’ method is used to eliminate elements based

on a criteria.

• The following code segment prints a count of empty
strings using filter.

https://www.tutorialspoint.com/java8/java8_streams.htm

List<String> strings = Arrays.asList("abc", "", "bc", "efg", "abcd","", "jkl");

//get count of empty string
int count = strings.stream().filter(string -> string.isEmpty()).count();

filter() returns a Stream consisting of the elements that match the predicate

(i.e. are empty).

https://www.tutorialspoint.com/java8/java8_streams.htm

Stream – filter

• The ‘filter’ method is used to eliminate elements based

on a criteria.

• The following code segment prints a count of empty
strings using filter.

https://www.tutorialspoint.com/java8/java8_streams.htm

List<String> strings = Arrays.asList("abc", "", "bc", "efg", "abcd","", "jkl");

//get count of empty string
int count = strings.stream().filter(string -> string.isEmpty()).count();

count() returns an int representing the number of elements in the Stream.

https://www.tutorialspoint.com/java8/java8_streams.htm

Date/time improvements

Old Date/Time API (java.util.Date):

• Not thread safe − java.util.Date is not thread safe, thus developers have

to deal with concurrency issue while using date. The new date-time API is

immutable and does not have setter methods.

• Poor design − Default Date starts from 1900, month starts from 1, and

day starts from 0, so no uniformity. The old API had less direct methods

for date operations. The new API provides numerous utility methods for

such operations.

• Difficult time zone handling − Developers had to write a lot of code to

deal with timezone issues. The new API has been developed keeping

domain-specific design in mind.

https://www.tutorialspoint.com/java8/java8_datetime_api.htm

https://www.tutorialspoint.com/java8/java8_datetime_api.htm

Date/time improvements

New Date/Time API (java.time):

• Local − Simplified date-time API with no complexity of

timezone handling.

• Zoned − Specialized date-time API to deal with various

timezones.

• Joda – based on the Joda component’s approach.

https://www.tutorialspoint.com/java8/java8_datetime_api.htm

https://www.tutorialspoint.com/java8/java8_datetime_api.htm

Date/time improvements (Local)

https://www.tutorialspoint.com/java8/java8_datetime_api.htm

// Get the current date and time

LocalDateTime currentTime = LocalDateTime.now();

System.out.println("Current DateTime: " + currentTime);

LocalDate date1 = currentTime.toLocalDate();

System.out.println("date1: " + date1);

Month month = currentTime.getMonth();

int day = currentTime.getDayOfMonth();

int seconds = currentTime.getSecond();

System.out.println("Month: " + month +“, day: " + day +“, seconds: " + seconds);

import java.time.LocalDate;

import java.time.LocalTime;

import java.time.LocalDateTime;

import java.time.Month;

https://www.tutorialspoint.com/java8/java8_datetime_api.htm

Date/time improvements (Local)

https://www.tutorialspoint.com/java8/java8_datetime_api.htm

// Get the current date and time

LocalDateTime currentTime = LocalDateTime.now();

System.out.println("Current DateTime: " + currentTime);

LocalDate date1 = currentTime.toLocalDate();

System.out.println("date1: " + date1);

Month month = currentTime.getMonth();

int day = currentTime.getDayOfMonth();

int seconds = currentTime.getSecond();

System.out.println("Month: " + month +“, day: " + day +“, seconds: " + seconds);

Current DateTime: 2017-10-16T19:53:55.053

date1: 2017-10-16

Month: OCTOBER, day: 16, seconds: 55

Console Output

import java.time.LocalDate;

import java.time.LocalTime;

import java.time.LocalDateTime;

import java.time.Month;

https://www.tutorialspoint.com/java8/java8_datetime_api.htm

Date/time improvements (Zoned)

https://www.tutorialspoint.com/java8/java8_datetime_api.htm

// Get the current date and time

ZonedDateTime date1 =

ZonedDateTime.parse("2017-10-03T10:15:30+05:30[Asia/Karachi]");

System.out.println("date1: " + date1);

ZoneId id = ZoneId.of("Europe/Paris");

System.out.println("ZoneId: " + id);

ZoneId currentZone = ZoneId.systemDefault();

System.out.println("CurrentZone: " + currentZone);

import java.time.ZonedDateTime;

import java.time.ZoneId;

https://www.tutorialspoint.com/java8/java8_datetime_api.htm

Date/time improvements (Zoned)

https://www.tutorialspoint.com/java8/java8_datetime_api.htm

// Get the current date and time

ZonedDateTime date1 =

ZonedDateTime.parse("2017-10-03T10:15:30+05:30[Asia/Karachi]");

System.out.println("date1: " + date1);

ZoneId id = ZoneId.of("Europe/Paris");

System.out.println("ZoneId: " + id);

ZoneId currentZone = ZoneId.systemDefault();

System.out.println("CurrentZone: " + currentZone);

date1: 2017-10-03T10:15:30+05:00[Asia/Karachi]

ZoneId: Europe/Paris

CurrentZone: Etc/UTC

Console Output

import java.time.ZonedDateTime;

import java.time.ZoneId;

https://www.tutorialspoint.com/java8/java8_datetime_api.htm

Optionals: java.util.Optional<T>

Optional:

• Is similar to what Optional is in Guava.

• is a container object which is used to contain not-null
objects.

• object is used to represent null with absent value.

• has various utility methods to facilitate code to handle
values as ‘available’ or ‘not available’ instead of
checking null values.

https://www.tutorialspoint.com/java8/java8_optional_class.htm

https://www.tutorialspoint.com/java8/java8_optional_class.htm

https://www.tutorialspoint.com/java8/java8_optional_class.htm

https://www.tutorialspoint.com/java8/java8_optional_class.htm

https://www.tutorialspoint.com/java8/java8_optional_class.htm

First parameter is present: false

Second parameter is present: true

10

Console Output

https://www.tutorialspoint.com/java8/java8_optional_class.htm

Java 9 - an outline of some changes

• Interfaces – private methods

• Collection factory methods

• Try with resources improvements

• Stream API improvements

• REPL (Shell)

• Module system

Defining Interfaces (JDK 9)
With private methods public interface IAddressBook{

static final int CAPACITY= 1000;

void clear();

IContact getContact(String lastName);

void addContact(IContact contact);

int numberOfContacts();

void removeContact(String lastName);

String listContacts();

default String typeOfEntity(){

return “Address book”;

}

static int getCapacity(){

return CAPACITY;

}

private static void displayDetails(){

//method implementation in here

}

}

Java 9 allows private methods as a
way to avoid writing duplicate code

(i.e. promote re-usability) and also to
hide interface implementation.

The methods can be private and
private static and are written in the
same way you would write a private

method in a class.

IAddressBook.java

Collection Factory Methods

• Often you want to create a collection (e.g., a List or Set) in your code and

directly populate it with some elements…

• That leads to repetitive code where you instantiate the collection, followed

by several `add` calls.

• With Java 9, several so-called collection factory methods have been added:

• NOTE: Immutable collections are created (i.e. cannot add to it) and the

collection implementation is selected by Java (e.g. ArrayList, LinkedList).

https://www.pluralsight.com/blog/software-development/java-9-new-features

Set<Integer> ints = Set.of(1, 2, 3);
List<String> strings = List.of("first", "second");
Map<String, String> map = Map.of("foo", "a", "bar", "b", "c");

https://www.pluralsight.com/blog/software-development/java-9-new-features

try-with-resources improvement

https://www.journaldev.com/13121/java-9-features-with-examples#private-methods

Improvements
to avoid

verbosity and
improve

readability.

https://www.journaldev.com/13121/java-9-features-with-examples#private-methods

Stream API improvement

• Addition of extra methods…as a sample, we will look at the takeWhile

method:

• takes a predicate as an argument and returns a Stream of subset of

the given Stream values until that Predicate returns false for first

time. If first value does NOT satisfy that Predicate, it just returns an

empty Stream.

https://www.journaldev.com/13121/java-9-features-with-examples#private-methods

Stream.of(1,2,3,4,5,6,7,8,9,10)

.takeWhile(i -> i < 5)

.forEach(System.out::println);

1

2

3

4

Console Output

https://howtodoinjava.com/java-8/how-to-use-predicate-in-java-8/
https://www.journaldev.com/13121/java-9-features-with-examples#private-methods

REPL (Read Evaluate Print Loop i.e. Shell)

• The jshell is used to easily execute and test Java constructs

like class, interface, enum, object, statements etc.

https://dzone.com/articles/jshell-in-five-minutes & https://www.journaldev.com/13121/java-9-features-with-examples#repl

On your command

line, start the shell

by typing jshell.

Then enter any

Java 9 statements

you wish.

https://dzone.com/articles/jshell-in-five-minutes
https://www.journaldev.com/13121/java-9-features-with-examples#repl

REPL (Read Evaluate Print Loop i.e. Shell)

https://dzone.com/articles/jshell-in-five-minutes & https://www.journaldev.com/13121/java-9-features-with-examples#repl

https://dzone.com/articles/jshell-in-five-minutes
https://www.journaldev.com/13121/java-9-features-with-examples#repl

REPL (Read Evaluate Print Loop i.e. Shell)

https://dzone.com/articles/jshell-in-five-minutes & https://www.journaldev.com/13121/java-9-features-with-examples#repl

https://dzone.com/articles/jshell-in-five-minutes
https://www.journaldev.com/13121/java-9-features-with-examples#repl

Module System

• One of the biggest changes in Java 9; it is part of the Jigsaw Project.

• With JDK9, you can separate your code into individual modules.

• “A module is a named, self-describing program component that consists of
one or more packages (and data)” https://jaxenter.com/new-features-in-java-9-137344.html

• Each module needs a module-info.java file. It is placed in the root
directory of the module. Within this file, you can declare:

• which modules your code is dependent upon i.e. jdk modules, external
jars, etc.

• which packages are allowed to see/use your module.

https://jaxenter.com/new-features-in-java-9-137344.html

10??

It’s coming…in March 2018!

10

Want to experiment further…

Some good code examples to experiment with can be found on these websites:

• https://www.tutorialspoint.com/java8/index.htm (Java 8)

• https://www.journaldev.com/12850/java-9-private-methods-interfaces (Java 8&9)

• https://www.journaldev.com/13121/java-9-features-with-examples (Java 7 to 9)

A webinar that might be of interest:

• https://dzone.com/articles/real-world-java-9-webinar

Articles:

• https://dzone.com/guides/java-development-and-evolution

• https://jaxenter.com/new-features-in-java-9-137344.html

• https://www.pluralsight.com/blog/software-development/java-9-new-features

• https://aboullaite.me/wrapping-up-java-9-new-features/

• https://dzone.com/articles/java-9-the-exciting-bits

https://www.tutorialspoint.com/java8/index.htm
https://www.journaldev.com/12850/java-9-private-methods-interfaces
https://www.journaldev.com/13121/java-9-features-with-examples
https://dzone.com/articles/real-world-java-9-webinar
https://dzone.com/guides/java-development-and-evolution
https://jaxenter.com/new-features-in-java-9-137344.html
https://www.pluralsight.com/blog/software-development/java-9-new-features
https://aboullaite.me/wrapping-up-java-9-new-features/
https://dzone.com/articles/java-9-the-exciting-bits

Except where otherwise noted, this content is

licensed under a Creative Commons Attribution-

NonCommercial 3.0 License.

For more information, please see

http://creativecommons.org/licenses/by-nc/3.0/

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/

