
Right B.I.C.E.P.

Produced

by:

Department of Computing and Mathematics

http://www.wit.ie/

Eamonn de Leastar (edeleastar@wit.ie)

Dr. Siobhán Drohan (sdrohan@wit.ie)

mailto:edeleastar@wit.ie
mailto:sdrohan@wit.ie

Right B.I.C.E.P.

It’s essential to understand

what’s important to test.

Right BICEP helps you ask

the right questions about

what to test.

Source Code: https://pragprog.com/titles/utj2/source_code

https://pragprog.com/titles/utj2/source_code

Right B.I.C.E.P.

• Guidelines of some areas that are important to test:

• Right - Are the results right?

• B - Are all the boundary conditions CORRECT?

• I - Can you check inverse relationships?

• C - Can you cross-check results using other means?

• E - Can you force error conditions to happen?

• P - Are performance characteristics within bounds?

3
Source Code: https://pragprog.com/titles/utj2/source_code

https://pragprog.com/titles/utj2/source_code

[Right] – B.I.C.E.P

• Key question : If the code ran correctly, how would the developer know?

• If this question cannot be answered satisfactorily, then writing the code or
the test may be a complete waste of time.

4

[Right] – B.I.C.E.P

• Key question : If the code ran correctly, how would the developer know?

• If this question cannot be answered satisfactorily, then writing the code or
the test may be a complete waste of time.

• Does that mean code cannot be written until all the requirements are in?

• Nothing stops you from proceeding without answers to every last question.

• Use your best judgment to make a choice about how to code things, and

later refine the code when answers do come.

• The definition of correct may change over the lifetime of the code in question,

but at any point, developer should be able to prove that it's doing what he/she

thinks it should be doing.

5

Right B.I.C.E.P.

• Guidelines of some areas that are important to test:

• Right - Are the results right?

• B - Are all the boundary conditions CORRECT?

• I - Can you check inverse relationships?

• C - Can you cross-check results using other means?

• E - Can you force error conditions to happen?

• P - Are performance characteristics within bounds?

6
Source Code: https://pragprog.com/titles/utj2/source_code

https://pragprog.com/titles/utj2/source_code

B. Boundary Conditions

• Identifying boundary

conditions is one of the most

valuable parts of unit testing,

because this is where most

bugs generally live - at the

edges.

7

public void testOrder (){
assertEquals(9, Largest.largest(new int[] { 9, 8, 7 }));
assertEquals(9, Largest.largest(new int[] { 8, 9, 7 }));
assertEquals(9, Largest.largest(new int[] { 7, 8, 9 }));

}

public void testDups (){
assertEquals(9, Largest.largest(new int[] { 9, 7, 9, 8 }));

}

public void testOne (){
assertEquals(1, Largest.largest(new int[] { 1 }));

}

public void testNegative (){
int[] negList = new int[] { -9, -8, -7 };
assertEquals(-7, Largest.largest(negList));

}

public void testEmpty (){
try
{
Largest.largest(new int[] {});
fail("Should have thrown an exception");

}
catch (RuntimeException e)
{
assertTrue(true);

}
}

Example Boundaries:

• Totally bogus or inconsistent input values, such as a file name of

"!*W:Xn&Gi/w>g/h#WQ@".

8

Example Boundaries:

• Totally bogus or inconsistent input values, such as a file name of

"!*W:Xn&Gi/w>g/h#WQ@".

• Badly formatted data, such as an e-mail address without a top-level domain

("fred@foobar.").

9

Example Boundaries:

• Totally bogus or inconsistent input values, such as a file name of

"!*W:Xn&Gi/w>g/h#WQ@".

• Badly formatted data, such as an e-mail address without a top-level domain

("fred@foobar.").

• Computations that can result in numeric overflow.

10

Example Boundaries:

• Totally bogus or inconsistent input values, such as a file name of

"!*W:Xn&Gi/w>g/h#WQ@".

• Badly formatted data, such as an e-mail address without a top-level domain

("fred@foobar.").

• Computations that can result in numeric overflow.

• Empty or missing values (such as 0, 0:0, "", or null).

11

Example Boundaries:

• Totally bogus or inconsistent input values, such as a file name of

"!*W:Xn&Gi/w>g/h#WQ@".

• Badly formatted data, such as an e-mail address without a top-level domain

("fred@foobar.").

• Computations that can result in numeric overflow.

• Empty or missing values (such as 0, 0:0, "", or null).

• Values far in excess of reasonable expectations, such as a person's age of

150 years.

12

Example Boundaries:

• Totally bogus or inconsistent input values, such as a file name of

"!*W:Xn&Gi/w>g/h#WQ@".

• Badly formatted data, such as an e-mail address without a top-level domain

("fred@foobar.").

• Computations that can result in numeric overflow.

• Empty or missing values (such as 0, 0:0, "", or null).

• Values far in excess of reasonable expectations, such as a person's age of

150 years.

• Duplicates in lists that shouldn't have duplicates e.g. class attendance.

13

Example Boundaries:

• Totally bogus or inconsistent input values, such as a file name of

"!*W:Xn&Gi/w>g/h#WQ@".

• Badly formatted data, such as an e-mail address without a top-level domain

("fred@foobar.").

• Computations that can result in numeric overflow.

• Empty or missing values (such as 0, 0:0, "", or null).

• Values far in excess of reasonable expectations, such as a person's age of

150 years.

• Duplicates in lists that shouldn't have duplicates e.g. class attendance.

• Ordered lists that aren't, and vice-versa. Try handing a pre-sorted list to a sort

algorithm, for instance, or even a reverse-sorted list.

14

Example Boundaries:

• Totally bogus or inconsistent input values, such as a file name of

"!*W:Xn&Gi/w>g/h#WQ@".

• Badly formatted data, such as an e-mail address without a top-level domain

("fred@foobar.").

• Computations that can result in numeric overflow.

• Empty or missing values (such as 0, 0:0, "", or null).

• Values far in excess of reasonable expectations, such as a person's age of

150 years.

• Duplicates in lists that shouldn't have duplicates e.g. class attendance.

• Ordered lists that aren't, and vice-versa. Try handing a pre-sorted list to a sort

algorithm, for instance, or even a reverse-sorted list.

• Things that arrive out of order, or happen out of expected order, such as trying

to print a document before logging in.

15

Recall this class from a previous lecture

• A ScoreCollection class accepts a Scoreable instance through its add() method.
• A Scoreable object is simply one that returns an int score.
• arithmeticMean() returns the average score for a collection of Scoreable

objects.

Recall it’s associated (very, very basic) test

—a test case—

To test a ScoreCollection
object, we can add
the numbers 5 and 7 to it
and expect that the
arithmeticMean() method
will return 6.

i.e. (5 + 7) / 2 = 6

New boundary test (1): adding a null to the collection

New boundary test (1): adding a null to the collection

Code Fix

New boundary test (2): handling an empty collection

New boundary test (2): handling an empty collection

Code Fix

New boundary test (3): sum exceeds MAX_Integer?

New boundary test (3): sum exceeds MAX_Integer?

Instead of int,

use long type

followed by an

int cast.

You can remember Boundary Conditions with
C.O.R.R.E.C.T.

• Conformance - Does the value conform to an expected format?

• Ordering - Is the set of values ordered or unordered as appropriate?

• Range - Is the value within reasonable minimum and maximum values?

• Reference - Does the code reference anything external that isn't under direct

control of the code itself?

• Existence - Does the value exist (e.g., is non-null, nonzero, present in a set,

etc.)?

• Cardinality - Are there exactly enough values?

• Time (absolute and relative) - Is everything happening in order? At the right

time? In time?

24

We will cover these in more detail in a subsequent lecture

Right B.I.C.E.P.

• Guidelines of some areas that are important to test:

• Right - Are the results right?

• B - Are all the boundary conditions CORRECT?

• I - Can you check inverse relationships?

• C - Can you cross-check results using other means?

• E - Can you force error conditions to happen?

• P - Are performance characteristics within bounds?

25
Source Code: https://pragprog.com/titles/utj2/source_code

https://pragprog.com/titles/utj2/source_code

I. Check Inverse Relationships

Some methods can be checked by applying

their logical inverse.

• e.g. check a method that calculates a

square root by squaring the result, and

testing that it is tolerably close to the

original number.

• or – verify division by performing

multiplication.

• or - check that some data was successfully

inserted into a database by then searching

for it.

26

public void

testSquareRootUsingInverse()

{

double x = mySquareRoot(4.0);

assertEquals(4.0, x * x, 0.0001);

}

Right B.I.C.E.P.

• Guidelines of some areas that are important to test:

• Right - Are the results right?

• B - Are all the boundary conditions CORRECT?

• I - Can you check inverse relationships?

• C - Can you cross-check results using other means?

• E - Can you force error conditions to happen?

• P - Are performance characteristics within bounds?

27
Source Code: https://pragprog.com/titles/utj2/source_code

https://pragprog.com/titles/utj2/source_code

C. Cross-check Using Other Means

• Where possible, use a different source
for the inverse test (bug could be in
original and in inverse).

• Usually there is more than one way to
calculate some quantity;

• pick one algorithm over the others
because it performs better, or has
other desirable characteristics - use
that one in production.

• use one of the other versions to
cross-check our results in the test
system.

• Especially helpful when there's a
proven, known way of accomplishing
the task that happens to be too slow or
too complex to use in production code.

28

public void testSquareRootUsingStd()

{

double number = 3880900.0;

double root1 = mySquareRoot(number);

double root2 = Math.sqrt(number);

assertEquals(root2, root1, 0.0001);

}

C. Cross-check Using Other Means (2)

Another example - a library database system:

• The number of copies of a particular book should always balance:

e.g. number of copies that are checked out + number of copies sitting

on the shelves should always equal the total number of copies.

• These are separate pieces of data, and they may even be reported by

objects of different classes, but they still have to agree, and so can be used

to cross-check one another.

29

Right B.I.C.E.P.

• Guidelines of some areas that are important to test:

• Right - Are the results right?

• B - Are all the boundary conditions CORRECT?

• I - Can you check inverse relationships?

• C - Can you cross-check results using other means?

• E - Can you force error conditions to happen?

• P - Are performance characteristics within bounds?

30
Source Code: https://pragprog.com/titles/utj2/source_code

https://pragprog.com/titles/utj2/source_code

E. Force Error Conditions

• In the real world, errors happen:

• disks fill up,

• network lines drop,

• e-mail goes down,

• and programs crash.

• Developers should test that code handles many of these real

world problems by forcing errors to occur.

That's easy enough to do with invalid parameters and the

like, but to simulate specific network errors without

unplugging any cables takes some special techniques (we

will cover this in a later lecture).
31

E. Force Error Conditions

Some scenarios you might consider when writing tests:

• Running out of memory.

• Running out of disk space.

• Issues with wall-clock time.

• Network availability and errors.

• System load.

• Limited color palette.

• Very high or very low video resolution.

32

Right B.I.C.E.P.

• Guidelines of some areas that are important to test:

• Right - Are the results right?

• B - Are all the boundary conditions CORRECT?

• I - Can you check inverse relationships?

• C - Can you cross-check results using other means?

• E - Can you force error conditions to happen?

• P - Are performance characteristics within bounds?

33
Source Code: https://pragprog.com/titles/utj2/source_code

https://pragprog.com/titles/utj2/source_code

P. Performance Characteristics

• Performance characteristics - does not necessarily mean

measuring performance itself - but rather performance trends

as input sizes grow, as problems become more complex.

• The approach is not to objectively measure performance, but to

incorporate general tests just to make sure that the

performance curve remains stable.

34

Performance
example

• A filter that identifies web
sites to block.

• The code may works well with
a few dozen sample sites, but
will it work as well with
10,000? 100,000?

• This test may take 6-7
seconds to run, so may run
only nightly.

• See JUnitPerf for tools to
simplify unit-level
performance measurement.

35

public void testURLFilter()
{
Timer timer = new Timer();
String naughty_url = "http://www.xxxxxxxxxxx.com";

// First, check a bad URL against a small list
URLFilter filter = new URLFilter(small_list);
timer.start();
filter.check(naughty_url);
timer.end();
assertTrue(timer.elapsedTime() < 1.0);

// Next, check a bad URL against a big list
URLFilter f = new URLFilter(big_list);
timer.start();
filter.check(naughty_url);
timer.end();
assertTrue(timer.elapsedTime() < 2.0);

// Finally, check a bad URL against a huge list
URLFilter f = new URLFilter(huge_list);
timer.start();
filter.check(naughty_url);
timer.end();
assertTrue(timer.elapsedTime() < 3.0);

}

http://www.clarkware.com/software/JUnitPerf.html
http://www.xxxxxxxxxxx.com

P. Performance Characteristics

• A better use of a unit-level performance measurement is to provide baseline

information for purposes of making changes.

• Suppose you suspect that a Java 8 lambda-oriented solution is suboptimal.

You’d like to replace it with a more classic solution to see if the performance

improves. Approach:

1. Before making optimizations, first write a performance “test” that simply

captures the current elapsed time as a baseline. (Run it a few times and

grab the average.)

2. Change the code, run the performance test again, and compare results.

You’re seeking relative improvement—the actual numbers themselves

don’t matter.

36

Except where otherwise noted, this content is

licensed under a Creative Commons Attribution-

NonCommercial 3.0 License.

For more information, please see

http://creativecommons.org/licenses/by-nc/3.0/

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/

