
Writing JUnit Tests

Produced

by:

Department of Computing and Mathematics

http://www.wit.ie/

Dr. Siobhán Drohan (sdrohan@wit.ie)

Eamonn de Leastar (edeleastar@wit.ie)

mailto:sdrohan@wit.ie
mailto:edeleastar@wit.ie

Anatomy of a Unit Test

• Four Phase Test i.e. Setup,

Exercise, Verify, Teardown.

• In-Line Setup and Teardown.

• Arrange, Act, Assert.

• Structuring Tests.

• JUnit4 Assertions.

Source Code: https://pragprog.com/titles/utj2/source_code

https://pragprog.com/titles/utj2/source_code

Four Phase Test

How do we

structure our test

logic to make

what we are

testing obvious?

We structure each

test with four

distinct parts

executed in

sequence.

SUT = System Under Test

How it works

• SETUP: In the first phase, we set up the test fixture (the “before” picture) that

is required for the SUT to exhibit the expected behavior as well as anything

you need to put in place to be able to observe the actual outcome.

• EXERCISE: In the second phase, we interact with the SUT.

• VERIFY: In the third phase, we do whatever is necessary to determine

whether the expected outcome has been obtained.

• TEARDOWN: In the fourth phase, we tear down the test fixture to put the

world back into the state in which we found it.

Four Phase Test: Example

Phase 1

(setup)

Phase 2 (exercise)

Phase 3 (verify)

Phase 4

(teardown)

Anatomy of a Unit Test

• Four Phase Test i.e. Setup,

Exercise, Verify, Teardown.

• In-Line Setup and Teardown.

• Arrange, Act, Assert.

• Structuring Tests.

• JUnit4 Assertions.

Source Code: https://pragprog.com/titles/utj2/source_code

https://pragprog.com/titles/utj2/source_code

Phase 1 (setup)

Phase 2(exercise)

Phase 3 (verify)

Phase 4 (teardown)

@Test
public void testXMLSerializer() throws Exception
{

String datastoreFile = "testdatastore.xml";
deleteFile (datastoreFile);

Serializer serializer = new XMLSerializer(new File (datastoreFile));

pacemaker = new PacemakerAPI(serializer);
populate(pacemaker);
pacemaker.store();

PacemakerAPI pacemaker2 = new PacemakerAPI(serializer);
pacemaker2.load();

assertEquals (pacemaker.getUsers().size(), pacemaker2.getUsers().size());
for (User user : pacemaker.getUsers())
{

Collection<User> users = pacemaker2.getUsers();
System.out.println("User to search for:");
System.out.println(user);
System.out.println("Collection");
System.out.println(users);
assertTrue (users.contains(user));

}
deleteFile (datastoreFile);

}

In-line Setup

and Teardown

Anatomy of a Unit Test

• Four Phase Test i.e. Setup,

Exercise, Verify, Teardown.

• In-Line Setup and Teardown.

• Arrange, Act, Assert.

• Structuring Tests.

• JUnit4 Assertions.

Source Code: https://pragprog.com/titles/utj2/source_code

https://pragprog.com/titles/utj2/source_code

Arrange, Act, Assert (AAA)

Arrange, Act, Assert (AAA)

is a pattern of arranging the code

within the method,

something similar to

In-Line Setup and Teardown.

Source: http://www.agile-code.com/blog/the-anatomy-of-a-unit-test/

AAA is an alternative,

or a complement to the

Four-phases pattern:

http://www.agile-code.com/blog/the-anatomy-of-a-unit-test/

Arrange, Act, Assert

Arrange

To do anything in a test, we first need to arrange things with code that
sets up the state in a test e.g. creating objects, interacting with them,
calling other APIs etc. In some rare cases, we won’t arrange anything,
because the system is already in the state we need.

Act
After we arrange the test, we act on—execute—the code we’re trying to
verify. Usually this is a call to a single method.

Assert

Finally, we assert that we get the expected result. Verify that the
exercised code behaved as expected. This can involve inspecting the
return value of the exercised code or the new state of any objects
involved. It can also involve verifying that interactions between the
tested code and other objects took place.

After
You might need a fourth step…if running the test results in any resources
being allocated, ensure that they get cleaned up.

First, a note on the iloveyouboss project

• Job-search website.

• Attempts to match prospective employees with potential employers, and vice

versa, much as a dating site would.

• Employers and employees both create profiles by answering a series of

multiple-choice or yes-no questions.

• The site scores profiles based on criteria from the other party and shows the

best potential matches from the perspective of both employee and employer.

• A sample question could be “Are you willing to relocate?”.

Arrange, Act, Assert: Basic Example (iloveyouboss)

A ScoreCollection class
accepts a Scoreable
instance through its add()
method.

A Scoreable object is
simply one that can return
an int score value.

arithmeticMean() returns
the average for a
collection of scoreable
objects i.e. things that
answer with a score.

Nice tutorial on Streams: http://winterbe.com/posts/2014/07/31/java8-stream-tutorial-examples/

http://winterbe.com/posts/2014/07/31/java8-stream-tutorial-examples/

Arrange, Act, Assert: Basic Example

—a test case—

To test a ScoreCollection
object, we can add
the numbers 5 and 7 to it
and expect that the
arithmeticMean() method
will return 6.

(5 + 7) / 2 = 6

Arrange, Act, Assert: Basic Example

—a test case—

To test a ScoreCollection
object, we can add
the numbers 5 and 7 to it
and expect that the
arithmeticMean() method
will return 6.

i.e. (5 + 7) / 2 = 6

We will return to this example in a later lecture

Using AAA to
complement
Four Phase Test public class SomeTestClass

{

@Before

public void SetUp()

{

//Initialisation of our test

}

@Test

public void Test()

{

//Arrange

// Act

// Assert

}

@After

public void Teardown()

{

//Lets get back to the original state

}

}

Source: http://www.agile-code.com/blog/the-anatomy-of-a-unit-test/

http://www.agile-code.com/blog/the-anatomy-of-a-unit-test/

Using AAA to
complement
Four Phase Test

Phase 1 (setup)

/ Arrange

Assert
Act

Phase 4 (teardown)

/ After

Anatomy of a Unit Test

• Four Phase Test i.e. Setup,

Exercise, Verify, Teardown.

• In-Line Setup and Teardown.

• Arrange, Act, Assert.

• Structuring Tests.

• JUnit4 Assertions.

Source Code: https://pragprog.com/titles/utj2/source_code

https://pragprog.com/titles/utj2/source_code

Structuring Tests

• Adopt Naming conventions

• A method named create-Account to be tested, then test method
might be named testCreateAccount.

• The method testCreateAccount will call createAccount with the
necessary parameters and verify that createAccount works as
advertised.

• Can have many test methods that exercise createAccount.

Structuring Tests

• Adopt Naming conventions

• A method named create-Account to be tested, then test method
might be named testCreateAccount.

• The method testCreateAccount will call createAccount with the
necessary parameters and verify that createAccount works as
advertised.

• Can have many test methods that exercise createAccount.

• Distinguish between Testing vs Production Code (separate
directories in the same project).

• The test code is for our internal use only - Customers or end-users
will never see it or use it.

Naming Individual Tests (1)

• Aim for more granular tests i.e. focused on a distinct behaviour

 test names can be more meaningful.

• Instead of suggesting what context you’re going to test

 suggest what happens as a result of invoking some behaviour

against a certain context.

Naming Individual Tests (1)

• Aim for more granular tests i.e. focused on a distinct behaviour

 test names can be more meaningful.

• Instead of suggesting what context you’re going to test

 suggest what happens as a result of invoking some behaviour

against a certain context.

• Reasonable test names can consist of up to seven or so words.

Naming Individual Tests (2)

• The cooler, more descriptive names all follow the form:

doingSomeOperationGeneratesSomeResult

Naming Individual Tests (2)

• The cooler, more descriptive names all follow the form:

doingSomeOperationGeneratesSomeResult

• You might also use a slightly different form such as:

someResultOccursUnderSomeCondition

Naming Individual Tests (2)

• The cooler, more descriptive names all follow the form:

doingSomeOperationGeneratesSomeResult

• You might also use a slightly different form such as:

someResultOccursUnderSomeCondition

• Or you might decide to go with the given-when-then naming pattern (which can

be a mouthful):

givenSomeContextWhenDoingSomeBehaviorThenSomeResultOccurs

Naming Individual Tests (2)

• The cooler, more descriptive names all follow the form:

doingSomeOperationGeneratesSomeResult

• You might also use a slightly different form such as:

someResultOccursUnderSomeCondition

• Or you might decide to go with the given-when-then naming pattern (which can

be a mouthful):

givenSomeContextWhenDoingSomeBehaviorThenSomeResultOccurs

• You can usually drop the givenSomeContext portion without creating too much

additional work for your test reader:

whenDoingSomeBehaviorThenSomeResultOccurs

Naming Individual Tests (2)

• The cooler, more descriptive names all follow the form:

doingSomeOperationGeneratesSomeResult

• You might also use a slightly different form such as:

someResultOccursUnderSomeCondition

• Or you might decide to go with the given-when-then naming pattern (which can

be a mouthful):

givenSomeContextWhenDoingSomeBehaviorThenSomeResultOccurs

• You can usually drop the givenSomeContext portion without creating too much

additional work for your test reader:

whenDoingSomeBehaviorThenSomeResultOccurs

• …which is about the same as doingSomeOperationGeneratesSomeResult.

Anatomy of a Unit Test

• Four Phase Test i.e. Setup,

Exercise, Verify, Teardown.

• In-Line Setup and Teardown.

• Arrange, Act, Assert.

• Structuring Tests.

• JUnit4 Assertions.

Source Code: https://pragprog.com/titles/utj2/source_code

https://pragprog.com/titles/utj2/source_code

JUnit Asserts

…methods that assist in determining

whether a method under test is

performing correctly or not.

JUnit Asserts

…methods that assist in determining

whether a method under test is

performing correctly or not.

The developer asserts that some condition is
true; that two bits of data are equal, or

not equal, or the same, etc.

JUnit Asserts

• Records failures (when the assertion is false) or errors
(when an unexpected exception occurs), and reports
these through the JUnit classes.

GUI version  red bar indicates failure.

• Asserts are the fundamental building block for unit tests;
the JUnit library provides a number of different forms of
assert.

assertTrue

assertTrue([String message], boolean condition)

• Asserts that the given boolean condition is true, otherwise the test fails.

• If test code is littered with the following:

assertTrue(true);

• it suggests that the construct is used to verify some sort of branching or

exception logic, it's probably a bad idea and may indicate unnecessarily

complex test logic.

assertTrue / assertFalse

assertTrue([String message], boolean condition)

• Asserts that the given boolean condition is true, otherwise the test fails.

• If test code is littered with the following:

assertTrue(true);

• it suggests that the construct is used to verify some sort of branching or

exception logic, it's probably a bad idea and may indicate unnecessarily

complex test logic.

assertFalse([String message], boolean condition)

• Asserts that the given boolean condition is false, otherwise the test fails.

assertThat (using Hamcrest assertion, equalTo)

assertThat(actual, matcher);

• actual: value to verify; often a call to the SUT.

• matcher: a static method call that allows comparing the results of an

expression against an actual value. Matchers can impart greater

readability to your tests as they read fairly well left-to-right as a sentence.

assertThat(account.getBalance(), equalTo(100));

Note: you need to import static org.hamcrest.CoreMatchers.*;

assertThat (using Hamcrest assertion, equalTo)

assertThat(account.getBalance(), equalTo(100));

• equalTo uses the equals() method as the basis for comparison.

• Primitive types are autoboxed into instances, so we can compare any type.

assertThat (using Hamcrest assertion, equalTo)

• Hamcrest assertions provide a more helpful message when they fail. The prior
test expected account.getBalance() to return 100. If it returns 101 instead, you
see this:

java.lang.AssertionError:
Expected: <100>

but: was <101>
at org.hamcrest.MatcherAssert.assertThat(MatcherAssert.java:20)

• assertTrue(): when it fails, we get the following stack trace:

java.lang.AssertionError
at org.junit.Assert.fail(Assert.java:86)

assertThat(account.getBalance(), equalTo(100));

• equalTo uses the equals() method as the basis for comparison.

• Primitive types are autoboxed into instances, so we can compare any type.

assertThat (other Hamcrest assertions)

assertThat(account.getName(), startsWith("xyz"));

• When the assertThat() call fails, we get the following stack trace:

java.lang.AssertionError:

Expected: a string starting with "xyz"

but: was "an account name“

at org.hamcrest.MatcherAssert.assertThat(MatcherAssert.java:20)

assertThat (other Hamcrest assertions)

assertThat(account.getName(), not(equalTo("plunderings")));

assertThat(account.getName(), is(not(nullValue())));

assertThat(account.getName(), is(notNullValue()));

Good comparison of assertThat vs asserts: https://objectpartners.com/2013/09/18/the-benefits-of-using-assertthat-over-other-assert-

methods-in-unit-tests/

And many more hamcrest matchers: http://hamcrest.org/JavaHamcrest/javadoc/1.3/org/hamcrest/CoreMatchers.html

assertThat(account.getName(), startsWith("xyz"));

• When the assertThat() call fails, we get the following stack trace:

java.lang.AssertionError:

Expected: a string starting with "xyz"

but: was "an account name“

at org.hamcrest.MatcherAssert.assertThat(MatcherAssert.java:20)

https://objectpartners.com/2013/09/18/the-benefits-of-using-assertthat-over-other-assert-methods-in-unit-tests/
http://hamcrest.org/JavaHamcrest/javadoc/1.3/org/hamcrest/CoreMatchers.html

assertEquals

assertEquals([String message], expected, actual)

• expected  a value predicted to be correct (typically hard-coded).

• actual  a value actually produced by the code under test.

• message  an optional and will be reported in the event of a failure.

• Any kind of object may be tested for equality; the appropriate equals method

will be used for the comparison (e.g. String.equals()).

• A note of caution: the equals method for native arrays, however, does not

compare the contents of the arrays, just the array reference itself.

assertEquals (with Tolerance)

• Computers cannot represent all floating-point numbers exactly, and will

usually be off a little bit  a loss of precision.

• Thus using assert to compare floating point numbers (floats or doubles in

Java), you should specify one additional piece of information, the tolerance.

assertEquals([String message], expected, actual, tolerance)

e.g.

assertEquals("Should be 3 1/3", 3.33, 10.0/3.0, 0.01);

assertNull / assertNotNull

• assertNull([String message], java.lang.Object object)

• assertNotNull([String message], java.lang.Object object)

• Asserts that the given object is null (or not null), failing otherwise.

assertSame / assertNotSame

• assertSame([String message], expected, actual)

• Asserts that expected and actual refer to the same object, and fails

the test if they do not.

• assertNotSame([String message], expected, actual)

• Asserts that expected and actual do not refer to the same object,

and fails the test if they are the same object.

fail

• fail([String message])

• Fails the test immediately, with the optional message.

• Often used to mark sections of code that should not be reached (for

instance, after an exception is expected).

Using asserts

• Usually have multiple asserts in a given test method, as you prove various

aspects and relationships of the method(s) under test.

• When an assert fails, that test method will be aborted and the remaining

assertions in that method will not be executed this time.

• Normally expect that all tests pass all of the time.

• In practice, that means that when a bug introduced, only one or two tests fail.

• Developer should NOT continue to add features when there are failing tests.

JUnit4 Framework

• The import statement brings in

the necessary JUnit

methods/annotations.

• Individual tests are marked with

the @Test annotation against

public methods.

import static org.junit.Assert.assertEquals;
import org.junit.Test;

public class TestClassOne
{

@Test
public void testAddition ()
{

assertEquals(4, 2 + 2);
}

@Test
public void testSubtraction ()
{

assertEquals(0, 2 - 2);
}

}

@Before / @After

• Each test should run independently of every
other test; this allows any individual test to
be run at any time, in any order.

• This requires ability to reset some parts of
the testing environment in between tests,
and/or clean up after a test has run.

• @Before / @After annotations ensure that
these methods are called before and after
each test is executed.

• You can have multiple methods annotated
with @Before / @After however the order
of execution is out of your control; if you
require your @Before methods to run in a
specific order, resort to just having one
method.

public class TestLargest
{

private int[] arr;

@Before
public void setUp()
{

arr = new int[] {8,9,7};
}

@After
public void tearDown()
{

arr = null;
}

}

@Before / @After
Example

public class TestDB extends TestCase {
private Connection dbConn;

@Before
public void setUp() {
dbConn = new Connection("oracle", 1521, "fred", "foobar");
dbConn.connect();

}

@After
public void tearDown() {
dbConn.disconnect();
dbConn = null;

}

@Test
public void testAccountAccess() // Uses dbConn
{
}

@Test
public void testEmployeeAccess() // Uses dbConn
{
}

}

@BeforeClass /
@AfterClass

public class TestDB extends TestCase {
private Connection dbConn;

@Before
public void setUp() {
dbConn = new Connection("oracle", 1521, "fred", "foobar");
dbConn.connect();

}

@After
public void tearDown() {
dbConn.disconnect();
dbConn = null;

}

@BeforeClass
public static void populateDB()
{
}

@AfterClass
public static void depopulateDB()
{
}

}

• One Time set up for
full TestCase.

• Called once before all
tests are executed.

• Called once after all
tests have executed.

• Does not effect
@Before / @After.

• Usually used for
expensive
operations/initialisation
e.g. populate a
database.

@Ignore

• JUnit runs all of the @Test

annotated methods automatically.

• Individual tests can be removed

temporarily via the @Ignore

annotation. You can include an

explanatory message e.g.:

@Ignore(“takes too long”)

• testLongRunner uses a brute-force

algorithm to find the shortest route

for the Travelling Salesman Problem

(TSP). @Ignore removed it from

default tests

public class TestClassTwo
{
// This one takes a few hours...
@Ignore
@Test
public void testLongRunner (){
TSP tsp = new TSP(); // Load with default cities
assertEquals(2300, tsp.shortestPath(50)); // top 50

}

@Test
public void testShortTest (){
TSP tsp = new TSP(); // Load with default cities
assertEquals(140, tsp.shortestPath(5)); // top 5

}

@Test
public void testAnotherShortTest (){
TSP tsp = new TSP(); // Load with default cities
assertEquals(586, tsp.shortestPath(10)); // top 10

}

}

Composed Tests

• Higher-level test that is composed
of both of two (or more) other test
classes.

• The following individual test
methods will be run:

• testAddition()
from TestClassOne

• testSubtraction()
from TestClassOne

• testShortTest()
from TestClassTwo

• testAnotherShortTest()
from TestClassTwo

import org.junit.AfterClass;
import org.junit.BeforeClass;
import org.junit.runner.RunWith;
import org.junit.runners.Suite;

@RunWith(Suite.class)
@Suite.SuiteClasses({TestClassOne.class,

TestClassTwo.class})

public class MetaTest
{
}

Composed Tests

Class Level Annotations:

• @RunWith

JUnit will invoke the annotated class

to run the tests, instead of using the

runner built into JUnit.

• @Suite.SuiteClasses

The SuiteClasses annotation specifies

the classes to be executed when a

class annotated with

@RunWith(Suite.class) is run.

import org.junit.AfterClass;
import org.junit.BeforeClass;
import org.junit.runner.RunWith;
import org.junit.runners.Suite;

@RunWith(Suite.class)
@Suite.SuiteClasses({TestClassOne.class,

TestClassTwo.class})

public class MetaTest
{
}

Composed Tests: @BeforeClass / @AfterClass

@RunWith(Suite.class)
@Suite.SuiteClasses({TestClassOne.class,

TestClassTwo.class})

public class MetaTest
{

@BeforeClass
public static void initialize(){

System.out.println(“setting up”);
// …

}

@AfterClass
public static void terminate(){

System.out.println(“tearing down”);
//...

}
}

public class TestClassOne
{

@Test
public void test1()
{
System.out.println("test1");
//…

}
}

public class TestClassTwo
{

@Test
public void test2()
{
System.out.println("test2");
//…

}
}

setting up
test1
test2
tearing down

Output:

Good Article on Test Order: https://garygregory.wordpress.com/2011/09/25/understaning-junit-method-order-execution/

One time
initialization

in class
MetaTest.

1

https://garygregory.wordpress.com/2011/09/25/understaning-junit-method-order-execution/

Composed Tests: @BeforeClass / @AfterClass

@RunWith(Suite.class)
@Suite.SuiteClasses({TestClassOne.class,

TestClassTwo.class})

public class MetaTest
{

@BeforeClass
public static void initialize(){

System.out.println(“setting up”);
// …

}

@AfterClass
public static void terminate(){

System.out.println(“tearing down”);
//...

}
}

public class TestClassOne
{

@Test
public void test1()
{
System.out.println("test1");
//…

}
}

public class TestClassTwo
{

@Test
public void test2()
{
System.out.println("test2");
//…

}
}

setting up
test1
test2
tearing down

Output:

Good Article on Test Order: https://garygregory.wordpress.com/2011/09/25/understaning-junit-method-order-execution/

Then all
(non-ignored)

tests in
TestClassOne

and
TestClassTwo

2

https://garygregory.wordpress.com/2011/09/25/understaning-junit-method-order-execution/

Composed Tests: @BeforeClass / @AfterClass

@RunWith(Suite.class)
@Suite.SuiteClasses({TestClassOne.class,

TestClassTwo.class})

public class MetaTest
{

@BeforeClass
public static void initialize(){

System.out.println(“setting up”);
// …

}

@AfterClass
public static void terminate(){

System.out.println(“tearing down”);
//...

}
}

public class TestClassOne
{

@Test
public void test1()
{
System.out.println("test1");
//…

}
}

public class TestClassTwo
{

@Test
public void test2()
{
System.out.println("test2");
//…

}
}

setting up
test1
test2
tearing down

Output:

Good Article on Test Order: https://garygregory.wordpress.com/2011/09/25/understaning-junit-method-order-execution/

If any exist, all
@Before
@After

@BeforeClass
@AfterClass
methods in

TestClassOne
and

TestClassTwo
are executed.

Note

https://garygregory.wordpress.com/2011/09/25/understaning-junit-method-order-execution/

Composed Tests: @BeforeClass / @AfterClass

@RunWith(Suite.class)
@Suite.SuiteClasses({TestClassOne.class,

TestClassTwo.class})

public class MetaTest
{

@BeforeClass
public static void initialize(){

System.out.println(“setting up”);
// …

}

@AfterClass
public static void terminate(){

System.out.println(“tearing down”);
//...

}
}

public class TestClassOne
{

@Test
public void test1()
{
System.out.println("test1");
//…

}
}

public class TestClassTwo
{

@Test
public void test2()
{
System.out.println("test2");
//…

}
}

setting up
test1
test2
tearing down

Output:

Good Article on Test Order: https://garygregory.wordpress.com/2011/09/25/understaning-junit-method-order-execution/

One time
teardown in

class MetaTest.

3

https://garygregory.wordpress.com/2011/09/25/understaning-junit-method-order-execution/

JUnit & Exceptions

• There are two kinds of exceptions worth noting:

Case 1. Expected exceptions resulting from a test

Case 2. Unexpected exceptions from something that’s

gone horribly wrong

For case 2 - JUnit will catch these and provide a complete stack trace.

Expected Exceptions

Simple School Approach:
“expected” annotation
parameter declares that the
specified exception should have
been thrown.

@Test
public void testEmpty ()
{

try
{

Largest.largest(new int[] {});
fail("Should have thrown an exception");

}
catch (RuntimeException e)
{

assertTrue(true);
}

}

@Test (expected = RuntimeException.class)
public void testEmpty ()
{

Largest.largest(new int[] {});
}

Old School Approach

Simple School Approach

Case 1 - sometimes in a
test, need to verify that
the method under test
has actually thrown an
exception.

Expected Exceptions – New School Approach

import org.junit.rules.*;
// ...

@Rule
public ExpectedException thrown = ExpectedException.none();

@Test
public void exceptionRule() {

thrown.expect(InsufficientFundsException.class);
thrown.expectMessage("balance only 0");
account.withdraw(100);

}

New School Approach (JUnit 4)

JUnit allows
you to define
rules, which
can provide

greater control
over what
happens

during the
flow of test
execution.

Expected Exceptions – New School Approach

import org.junit.rules.*;
// ...

@Rule
public ExpectedException thrown = ExpectedException.none();

@Test
public void exceptionRule() {

thrown.expect(InsufficientFundsException.class);
thrown.expectMessage("balance only 0");
account.withdraw(100);

}

New School Approach (JUnit 4)

To use the ExpectedException rule, declare a public instance of
ExpectedException in the test class and mark it with @Rule.

Suppose we’re designing
a test in which we
withdraw funds from a
new account—that is,
one with no money.
Withdrawing any money
from the account should
generate an exception.

import org.junit.rules.*;
// ...

@Rule
public ExpectedException thrown

= ExpectedException.none();

@Test
public void exceptionRule() {

thrown.expect(InsufficientFundsException.class);
thrown.expectMessage("balance only 0");
account.withdraw(100);

}

Expected Exceptions – New School Approach

We tell the thrown rule instance to

expect that an

InsufficientFundsException gets

thrown.

We set another expectation on the

thrown rule…the thrown exception

should contain the passed

substring.

Finally, our act portion of the test withdraws money which

hopefully triggers the exception we expect. JUnit’s rule

mechanism handles the rest, passing the test if all expectations

on the rule were met and failing the test otherwise.

New School Approach (JUnit 4)

Testing Exceptions - New School Approach (JUnit 5)

• The @Rule annotation no longer exists in JUnit5; use assertThrows instead!

Testing Exceptions - New School Approach (JUnit 5)

@Test
@DisplayName("throws EmptyStackException when popped")
void throwsExceptionWhenPopped()
{

assertThrows(EmptyStackException.class, () -> stack.pop());
}

@Test
@DisplayName("throws EmptyStackException when peeked")
void throwsExceptionWhenPeeked()
{

assertThrows(EmptyStackException.class, () -> stack.peek());
}

JUnit Testing Advice (so far)

• You should make your tests visually consistent using AAA(A).

• You should keep your tests maintainable by testing behaviour, not
methods (i.e. focus on the behaviours of your class and not
individual methods).

• Adhere to test naming conventions (and separate folder structures).

• Use @Before and @After for common initialisation and cleanup
needs. You can have multiples of these methods (can’t guarantee
order of execution, though).

• Safely ignore tests getting in your way.

Source: http://www.agile-code.com/blog/the-anatomy-of-a-unit-test/

http://www.agile-code.com/blog/the-anatomy-of-a-unit-test/

Except where otherwise noted, this content is

licensed under a Creative Commons Attribution-

NonCommercial 3.0 License.

For more information, please see

http://creativecommons.org/licenses/by-nc/3.0/

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/

