
Introduction to Maven

Produced

by:

Department of Computing and Mathematics

http://www.wit.ie/

Dr. Siobhán Drohan (sdrohan@wit.ie)

Eamonn de Leastar (edeleastar@wit.ie)

mailto:sdrohan@wit.ie
mailto:edeleastar@wit.ie

Definition and Objectives

What is Maven?

• a Yiddish word meaning

accumulator of knowledge!

• a tool for building and managing any Java-

based project (i.e. a software project

management and comprehension tool).

http://maven.apache.org/what-is-maven.html

https://en.wikipedia.org/wiki/Maven
http://maven.apache.org/what-is-maven.html

Maven’s Objectives

Maven’s goal is to allow a developer to understand the complete

state of a development effort in the shortest period of time. It

encompasses:

1. Making the build process easy

2. Providing a uniform build system

3. Providing quality project information

4. Providing guidelines for best practices development

5. Allowing transparent migration to new features

http://maven.apache.org/what-is-maven.html

http://maven.apache.org/what-is-maven.html

Objective 1:
Making the build process easy

http://maven.apache.org/what-is-maven.html

“While using Maven doesn’t

eliminate the need to know about

the underlying mechanisms,

Maven does provide a lot of

shielding from the details.”

http://maven.apache.org/what-is-maven.html

Objective 2:
Providing a uniform build system

• Maven builds a project using its project object model

(pom.xml) and a set of plugins shared by all projects using

Maven:

 providing a uniform build system.

• If you know how one Maven project builds you

automatically know how all Maven projects build:

 saves immense time when involved in many projects.

http://maven.apache.org/what-is-maven.html

http://maven.apache.org/what-is-maven.html

Objective 3:
Providing quality project information

Maven provides plenty of useful project information, some from

pom.xml, some generated from your project’s sources e.g.:

• Build Settings e.g. versions of JDK/JUnit, plugins, etc.

• List of Dependencies

• Unit test reports including code coverage

• etc.

http://maven.apache.org/what-is-maven.html

http://maven.apache.org/what-is-maven.html

Objective 4: Providing guidelines for
best practices development

• Maven aims to gather current principles for best practices development, and

make it easy to guide a project in that direction e.g.

• specification, execution, and reporting of unit tests are part of the normal

build cycle using Maven. Current unit testing best practices were used as

guidelines:

• Keeping your test source code in a separate, but parallel source tree

• Using test case naming conventions to locate and execute tests

• Have test cases setup their environment and don’t rely on customizing

the build for test preparation.

• Maven also lays out your project’s directory structure once you learn the

layout you can easily navigate any other Maven project.

http://maven.apache.org/what-is-maven.html

http://maven.apache.org/what-is-maven.html

Objective 5: Allowing transparent
migration to new features

Maven installation is easy to

update so you can take advantage

of any changes made to Maven itself.

http://maven.apache.org/what-is-maven.html

http://maven.apache.org/what-is-maven.html

Some More Objectives…

• Provides a standard development infrastructure across projects.

• Make the development process transparent.

• Decrease training for new developers.

• Bring together tools in a uniform way.

• Prevent inconsistent setups.

• Divert energy to application development activities.

• Project setups are simple and reusable; new projects can be set

up in a very short time.

Project Object Model (pom.xml)

Project Object Model (pom.xml)

• XML representation of a Maven project; a one-stop-shop for all

things concerning the project.

• It is, effectively:

• the declarative manifestation of the "who", "what", and "where",

• while the build lifecycle is the "when" and "how".

• pom.xml is found in the base directory of project.

https://maven.apache.org/pom.html#What_is_the_POM

https://maven.apache.org/pom.html#What_is_the_POM

Project Object Model (pom.xml)

• It tells Maven how to execute a project.

• Contains metadata about the project

• Location of directories,

Developers/Contributors

Extra plugins required

Special plugin configuration

Jars required (3rd party and in-house)

Repositories to search for plugins/jars, etc.

• A project’s POM inherits from the Super POM.

• All standard project information (e.g. directory structure) is held in the Super

POM (principle).

Skeleton/Minimal pom.xml

<project>

<modelVersion>4.0.0</modelVersion>

<groupId>com.mycompany.app</groupId>

<artifactId>my-app</artifactId>

<packaging>jar</packaging>

<version>1.0</version>

<dependencies>

<dependency>
<groupId>com.thoughtworks.xstream</groupId>
<artifactId>xstream</artifactId>
<version>1.4.10</version>

</dependency>

</dependencies>

</project>

Uniquely identify

project in the

repo

Coherent organization of dependencies

• Three related concepts: Artifact; Dependencies; Repositories

<project>
………

<dependencies>

<dependency>
<groupId>com.thoughtworks.xstream</groupId>
<artifactId>xstream</artifactId>
<version>1.4.10</version>

</dependency>

</dependencies>

</project>

This project has a dependency
on version 1.4.10 of the artifact

with id xstream, produced by the
com.thoughtworks.xstream group.

Coherent organization of dependencies

• All artifacts/dependencies are stored in repositories

• Local and remote repositories

• The local repository is searched first, then remote ones.

Coherent organization of dependencies

• All artifacts/dependencies are stored in repositories

• Local and remote repositories

• The local repository is searched first, then remote ones.

• Dependencies are automatically downloaded (from remote repositories)

and installed (in local repository) for future use.

• Maven knows about some remote repositories, e.g.

http://www.ibiblio.org/archive/2013/02/ibiblio-tagged-in-maven/

• Other remote repositories can be listed in the project POM or in Maven’s

configuration file (setting.xml)

http://www.ibiblio.org/archive/2013/02/ibiblio-tagged-in-maven/

Local repositories

• After installing and running Maven for the

first time a local repository is automatically

created and populated with some standard

artifacts.

• Default Local repository location:

Home/.m2/repository

• Plugins are also stored in repositories.

• In theory a repository is an abstract storage

mechanism, but in practice it is a directory

structure in your file system

Repository structure

• Maven uses artifact’s id, group

id. and version to navigate to

the correct folder.

• If the groupId is a fully qualified

domain name such as x.y.z

then it is fully expanded.

Repository structure

• Maven uses artifact’s id, group

id. and version to navigate to

the correct folder.

• If the groupId is a fully qualified

domain name such as x.y.z

then it is fully expanded.

<project>
………

<dependencies>

<dependency>
<groupId>com.thoughtworks.xstream</groupId>
<artifactId>xstream</artifactId>
<version>1.4.3</version>

</dependency>

</dependencies>

</project>

The full picture

Plugins and MOJOs

Build Lifecycle

• Maven simplifies and standardizes the project build process. It handles:

• Compilation

• Distribution

• Documentation

• Team collaboration and

• Other tasks seamlessly.

http://www.tutorialspoint.com/maven/

http://www.tutorialspoint.com/maven/

Maven Plugins

Maven encapsulates build logic into modules called plugins:

• Build Plugins:

• executed during the build

• configured in the <build/> element of the POM (if required).

• Reporting Plugins:

• executed during the site generation

• configured in the <reporting/> element of the POM (if required).

http://maven.apache.org/plugins/index.html

http://maven.apache.org/plugins/index.html

Plugins and MOJOs

• A plugin’s components, called mojos, perform build tasks.

• MOJO - Maven plain Old Java Objects

• Maven acts as a framework which coordinates the execution

of plugins in a well defined way.

• Some plugins are standard, others are downloaded on

demand.

plugins

user

e.g. mvn install

Maven validate

compile

test

install

deploy

package

verify

Build Lifecycle Phases

mojo

mojo

mojo

mojo

mojo
bindings

Plugins and MOJOs

A lifecycle phase invokes the

relevant plugins (the mojos)

to do the work.

Build Lifecycle Phases

validate validate the project is correct and all necessary information is available.

compile compile the source code of the project.

test test the compiled source code using a suitable unit testing framework.
These tests should not require the code be packaged or deployed.

package take the compiled code and package it in its distributable format, such as
a JAR.

verify run any checks on results of integration tests to ensure quality criteria
are met.

install install the package into the local repository, for use as a dependency in
other projects locally.

deploy done in the build environment, copies the final package to the remote
repository for sharing with other developers and projects.

Full lifecycle reference: https://maven.apache.org/guides/introduction/introduction-to-the-lifecycle.html#Lifecycle_Reference

https://maven.apache.org/guides/introduction/introduction-to-the-lifecycle.html#Lifecycle_Reference

Declarative Execution

When user invokes a lifecycle phase,

all its predecessors are also executed,

if necessary, e.g.

mvn package (invokes validate, compile & test also).

validate

compile

test

package

verify

install

deploy

Archetypes

What are Archetypes?

• Archetype is a Maven project templating toolkit:

 provides sample maven projects to get users up and

running as quickly as possible.

• Using archetypes provides a great way to enable developers

quickly in a way consistent with best practices.

https://maven.apache.org/archetype/index.html

https://maven.apache.org/archetype/index.html

Some Archetype Options

maven-archetype-webapp Web application (WAR) project template

maven-archetype-j2ee-simple
J2EE project (EAR) with directories and
subprojects for the EJBs, servlets, etc.

maven-archetype-quickstart
(default)

simple Java project (JAR)

We will experiment with
this archetype in the

next slide deck.

Archetypes

• To create a new project folder structure with the

archetype plugin, invoke the generate goal

Command format: mvn plugin-name:goal

Actual command: mvn archetype:generate

mvn archetype:generate
-DgroupId=[your project's group id]
-DartifactId=[your project's artifact id]
-DarchetypeArtifactId=[artifact type]

Archetype (Quickstart)

• Folder structure for ‘quickstart’

archetype.

• The base directory name is

taken from artifactid.

• A skeleton POM is included

in base directory.

mvn archetype:generate

-DgroupId=com.agile.firstapp

-DartifactId=first-app
-DarchetypeArtifactId=maven-archetype-quickstart

Archetype (Quickstart)

mvn archetype:generate

-DgroupId=com.agile.firstapp

-DartifactId=first-app
-DarchetypeArtifactId=maven-archetype-quickstart

package com.agile.firstapp;

/**

* Hello world!

*

*/

public class App

{

public static void main(String[] args)

{

System.out.println("Hello World!");

}

}

Site Lifecycle

Site Lifecycle

pre-site execute processes needed prior to the
actual project site generation

site generate the project's site
documentation

post-site execute processes needed to finalize the
site generation, and to prepare for site
deployment

site-deploy deploy the generated site
documentation to the specified web
server

https://maven.apache.org/guides/introduction/introduction-to-the-lifecycle.html#Lifecycle_Reference

https://maven.apache.org/guides/introduction/introduction-to-the-lifecycle.html#Lifecycle_Reference

mvn site

mvn site

generate the project's site documentation

mvn site

generate the project's site documentation

Repository

A repo of our dependencies!

https://mvnrepository.com/

https://mvnrepository.com/

XStream 1.4.10 (XML dependency code too)

Except where otherwise noted, this content is

licensed under a Creative Commons Attribution-

NonCommercial 3.0 License.

For more information, please see

http://creativecommons.org/licenses/by-nc/3.0/

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/

