
Produced 
by

Department of Computing, Maths & Physics

Waterford Institute of Technology

http://www.wit.ie

http://elearning.wit.ie

Introduction to the Java Programming Language

Exceptions

Dr. Siobhán Drohan (sdrohan@wit.ie) 

Eamonn de Leastar (edeleastar@wit.ie)

http://www.wit.ie
http://www.wit.ie
mailto:sdrohan@wit.ie
mailto:edeleastar@wit.ie


Exceptions

 Motivation / Definition

 Catching and Throwing Exceptions

 Java 7+ and Exceptions

 Exception Hierarchy

 Handling Mechanisms

 Defining exceptions

 Common exceptions and errors



Motivation

Exceptions provide the means to separate the details of 

what to do when something out of the ordinary happens 

from the main logic of a program.



Motivation

Exceptions provide the means to separate the details of 

what to do when something out of the ordinary happens 

from the main logic of a program.

readFile

{

open the file;

determine its size;

allocate that much memory;

read the file into memory;

close the file;

}



Motivation

Exceptions provide the means to separate the details of 

what to do when something out of the ordinary happens 

from the main logic of a program.

readFile

{

open the file;

determine its size;

allocate that much memory;

read the file into memory;

close the file;

}

• What happens if the file can't be 
opened?

• What happens if the length of the 
file can't be determined?

• What happens if enough memory 
can't be allocated?

• What happens if the read fails?

• What happens if the file can't be 
closed?



Motivation

Example 

(if-statements)

errorCodeType readFile {

initialize errorCode = 0;

open the file;

if (theFileIsOpen) {

determine the length of the file;

if (gotTheFileLength) {

allocate that much memory;

if (gotEnoughMemory) {

read the file into memory;

if (readFailed) {

errorCode = -1;

}

} else {

errorCode = -2;

}

} else {

errorCode = -3;

}

close the file;

if (theFileDidntClose && errorCode == 0) {

errorCode = -4;

} else {

errorCode = errorCode and -4;

}

} else {

errorCode = -5;

}

return errorCode;

}

readFile

{

open the file;

determine its size;

allocate that much memory;

read the file into memory;

close the file;

}



Motivation

Example 

(exceptions)

readFile

{

open the file;

determine its size;

allocate that much memory;

read the file into memory;

close the file;

}

readFile {

try {

open the file;

determine its size;

allocate that much memory;

read the file into memory;

close the file;

} catch (fileOpenFailed) {

doSomething;

} catch (sizeDeterminationFailed) {

doSomething;

} catch (memoryAllocationFailed) {

doSomething;

} catch (readFailed) {

doSomething;

} catch (fileCloseFailed) {

doSomething;

}

}



What are Exceptions?

• Exceptions are unexpected conditions in a program.

• An Exception is an object that signals that some unusual 
condition has occurred while the program is executing.  

• Exceptions are intended to be detected and handled, so that 
the program can continue in a sensible way if at all possible.

• Java has many predefined Exception objects, and we can also 
create our own.  



When an exception occurs…

...the normal flow of execution is disrupted and 
transferred to code (catch), which can handle the 

exception condition.  

The exception mechanism is a lot cleaner than 
having to check an error value after every 

method call that could potentially fail. 



Exceptions

 Motivation / Definition

 Catching and Throwing Exceptions

 Java 7+ and Exceptions

 Exception Hierarchy

 Handling Mechanisms

 Defining exceptions

 Common exceptions and errors



try and catch - syntax

Catching an exception means declaring that you can handle 
exceptions of a particular class from a particular block of code.  

To catch exceptions - surround a block of code with a "try, catch" 
statement. 



try and catch - syntax

Catching an exception means declaring that you can handle 
exceptions of a particular class from a particular block of code.  

To catch exceptions - surround a block of code with a "try, catch" 
statement. 

public void myMethod()

{

try{

//Code that throws exception e:

//   The try clause is the piece of code which you want 

//   to try to execute.  It contains statements in which an 

//   exception could be raised.

}

catch (Exception e){

//Code that handles exception e:

//   The catch clauses are the handlers. for the various exceptions

//   They contain code to handle the Exception and recover from 

//   it (if possible).

}

}



try and catch - example

The parameter e is of type Exception and we can 
use it to print out what exception occurred.

try{

//Code that throws exception e:

myMethod();

}

catch (Exception e){

//Code that handles exception e:

System.err.println(“Caught Exception:  “ + e);



Flow of control in Exception Handing



Catching Multiple Exceptions

It is possible to catch multiple exceptions in a catch block

 Order of exceptions is important as more generic exceptions 
should be handled at the end

public void myMethod()

{

try

{

//code that throws exception e1

//code that throws exception e2

}

catch(MyException e1)

{

//code that handles exception e1

}

catch(Exception e2)

{

//code that handles exception e2

}

}

Exception

MyException



finally block

Executes always at the end after the last catch block

 Commonly used for cleaning up resources (closing files, streams, 
etc.)

public void myMethod()

{

try

{

//code that throws exception e1

//code that throws exception e2

}

catch (MyException e1)

{

//code that handles exception e1

}

catch (Exception e2)

{

//code that handles exception e2

}

finally

{

//clean up code, close resources

}

}



The Catch or Specify Requirement

• Valid Java programming language code must honor the Catch or Specify 
Requirement. 

• This means that code that might throw certain exceptions must be 
enclosed by either of the following:

• A try statement that catches the exception. The try must provide a 
handler for the exception, as described in Catching and Handling 
Exceptions.

• A method that specifies that it can throw the exception. The 
method must provide a throws clause that lists the exception, as 
described in Specifying the Exceptions Thrown by a Method.

• Code that fails to honor the Catch or Specify Requirement will not 
compile.

• Not all exceptions are subject to the Catch or Specify Requirement.

http://java.sun.com/docs/books/tutorial/essential/exceptions/handling.html
http://java.sun.com/docs/books/tutorial/essential/exceptions/declaring.html


Exceptions

 Motivation / Definition

 Catching and Throwing Exceptions

 Java 7+ and Exceptions

 Exception Hierarchy

 Handling Mechanisms

 Defining exceptions

 Common exceptions and errors



RECAP - try-with-resources

• Introduced in Java 7.

• The try-with-resources statement is a try statement 
that declares one or more resources.  A resource is an 
object that must be closed after the program is 
finished with it.

• The try-with-resources statement ensures that each 
resource is closed at the end of the statement.



RECAP - try-with-resources

static String readFirstLineFromFile(String path) throws IOException { 

//try-with-resources, Java 7. br will be closed regardless of

//whether the try statement completes normally or abruptly

try (BufferedReader br = new BufferedReader(new FileReader(path))) { 

return br.readLine(); 

}

}

static String readFirstLineFromFile(String path) throws IOException {     

BufferedReader br = new BufferedReader(new FileReader(path)); 

//try with a finally block, pre Java 7. 

try { 

return br.readLine(); 

} 

finally { 

if (br != null) 

br.close(); 

} 

}



try-with-resources

• A try-with-resources statement can 
have catch and finally blocks just like an 
ordinary try statement. 

• In a try-with-resources statement, 
any catch or finally block is run after the 
resources declared have been closed.



Multiple Exception Handling

• In Java 7 and later, you can catch more than one type of 
exception with one exception handler i.e. 

• A single catch block can handle more than one type of exception. This 
feature can reduce code duplication and lessen the temptation to catch 
an overly broad exception.



Multiple Exception Handling

• In Java 7 and later, you can catch more than one type of 
exception with one exception handler i.e. 

• A single catch block can handle more than one type of exception. This 
feature can reduce code duplication and lessen the temptation to catch 
an overly broad exception.

• In the catch clause, specify the types of exceptions that block 
can handle, and separate each exception type with a vertical 
bar (|).

catch (IOException|SQLException ex) {     

logger.log(ex); 

throw ex; 

}



Exceptions

 Motivation / Definition

 Catching and Throwing Exceptions

 Java 7+ and Exceptions

 Exception Hierarchy

 Handling Mechanisms

 Defining exceptions

 Common exceptions and errors



Exception Hierarchy

Throwable

Exception Error

RuntimeException

Unchecked 

Checked



Exception Hierarchy

Throwable Top of the exception hierarchy in Java, all exceptions 

are of this type.

Error (unchecked 

exception)

Represents serious problems in program, that usually 

cannot be covered from e.g hardware malfunction.

Exception

(checked 

exception)

Superclass for all exceptions including user-defined 

exceptions. Users extend from this class exceptions 

that can be recovered from.

RuntimeException

(unchecked 

exception)

Generally caused by illegal operations, bad API usage 

etc. These exceptions indicate serious bug that cannot 

be recovered from and should be eliminated from app.



Three Kinds of 
Exception in Java

1. Checked Exception: 

Exceptional conditions that a well-written application should anticipate 
and recover from:

e.g. attempt to open non-existent file.

Checked exceptions are subject to the Catch or Specify Requirement.



2. Errors: 

Exceptional conditions that are external to the application, and that 
the application usually cannot anticipate or recover from 

e.g. hardware malfunction

Errors are not subject to the Catch or Specify Requirement

Three Kinds of 
Exception in Java



3. Runtime Exceptions: 

These are exceptional conditions that are internal to the application
that usually happen at runtime. Typically can be avoided through good 
programming practices!

e.g. ArithmeticException(dividing by zero)
NullPointerException (trying to access a null object)

Runtime exceptions are not subject to the Catch or Specify 
Requirement.

Three Kinds of 
Exception in Java



Exceptions

 Motivation / Definition

 Catching and Throwing Exceptions

 Java 7+ and Exceptions

 Exception Hierarchy

 Handling Mechanisms

 Defining exceptions

 Common exceptions and errors



Handling Exceptions in Java

 There are two different mechanisms for handling Java 
exceptions:

Where they occur: handling exceptions directly in the method where 
they are caught.

 At another level: Propagating exceptions up the call stack to the calling 
method

The calling method then handles the exceptions

 Which way you will handle exceptions depends on the overall 
design of the system.



Throwing/Forwarding/Catching



Propagating Exceptions

Can be used instead of try-catch block

 Let the calling method handle the exception

 Need to declare that the method (in which code is defined) 
throws the exception
Keyword throws is used in method declaration

public void myMethod() throws Exception

{

//code that throws exception e

}



Handling Generic Exceptions

If you catch generic exception that will catch all the exceptions 
of that particular type.

For example, catching Throwable will handle checked and 
unchecked exceptions.

public void myMethod()

{

try

{

//code that can throw checked/unchecked exceptions

}

catch (Throwable e)

{

System.out.println(e.printStackTrace());

}

}



Exceptions

 Motivation / Definition

 Catching and Throwing Exceptions

 Java 7+ and Exceptions

 Exception Hierarchy

 Handling Mechanisms

 Defining exceptions

 Common exceptions and errors



Creating new Exceptions

It is possible to create new exception types specific to the 
application

These must be subclasses of Exception class

 For example, exception hierarchy for an insurance application 
could be:

Exception

InsuranceException

PolicyCreationException LowPremiumException



Throwing Exceptions

public class PolicyFactory

{

public Policy createPolicy(Policyable aPolicyable) 

throws PolicyCreationException

{

if (aPolicyable.doesMatchInsuranceCriteria())

{

return aPolicyable.createPolicy();

}

else

{

throw new PolicyCreationException();

}

}

 To throw new exception:

Use keyword throw

 Create a new instance of exception



Exceptions

 Motivation / Definition

 Catching and Throwing Exceptions

 Java 7+ and Exceptions

 Exception Hierarchy

 Handling Mechanisms

 Defining exceptions

 Common exceptions and errors



Some Common Java Exceptions

Unchecked, subclass of RuntimeException:
 NullPointerException

Thrown if a message is sent to null object

 ArrayIndexOutOfBoundsException
Thrown if an array is accessed by illegal index

 Checked:
 IOException

Generic class for exceptions produced by input/output operations

 NoSuchMethodException
Thrown when a method cannot be found (Good example here)

 ClassNotFoundException
Thrown when application tries to load class but definition cannot be found

(good example here).

http://codeinventions.blogspot.in/2014/10/NoSuchMethodException-vs-NoSuchMethodError.html
http://alvinalexander.com/blog/post/java/java-faq-what-is-classnotfoundexception


Some Common Java Errors

 NoSuchMethodError

 Application calls method that no longer exist in the class definition

Usually happens when a class definition removes a method and is 
recompiled, but other classes using the “removed” method are not 
recompiled. 

 NoClassDefFoundError

 JVM tries to load class and class cannot be found

Usually happens if classpath is not set, or class somehow gets removed 
from the classpath

 ClassFormatError

 JVM tries to load class from file that is incorrect

Usually happens if class file is corrupted, or if it isn’t class file



Silent Fail Problem

• What happens if 
an exception 
occurs in this 
code?

• Who is monitoring 
the stack trace log 
file?

public void process() 

{

try 

{

// do something

} 

catch(Exception e) 

{

e.printStackTrace();

}

}

public void process() throws Exception 

{

// do something

}

public void process()

{

// do something

}
unchecked

checked

checked



Checked Vs Unchecked?

• Because Java does not require methods to catch or to specify 
unchecked exceptions programmers may be tempted to write 
code that throws only unchecked exceptions (or make all their 
exception subclasses inherit from RuntimeException).

• This allows programmers to write code without bothering with 
compiler errors and without bothering to specify or to catch 
any exceptions.

• Seems convenient to the programmer, as it sidesteps the 
intent of the catch or specify requirement.



Oracle Advice (Java Tutorial)

• Generally speaking, do not throw a RuntimeException or create 
a subclass of RuntimeException simply because you don't want 
to be bothered with specifying the exceptions your methods 
can throw.

• Bottom line guideline: If a client can reasonably be expected to 
recover from an exception, make it a checked exception. If a 
client cannot do anything to recover from the exception, make 
it an unchecked exception.

• For alternative view see: 
http://www.mindview.net/Etc/Discussions/CheckedExceptions

http://www.mindview.net/Etc/Discussions/CheckedExceptions


Exceptions

 Motivation / Definition

 Catching and Throwing Exceptions

 Java 7+ and Exceptions

 Exception Hierarchy

 Handling Mechanisms

 Defining exceptions

 Common exceptions and errors



Except where otherwise noted, this content is 

licensed under a Creative Commons 

Attribution-NonCommercial 3.0 License. 

For more information, please see 

http://creativecommons.org/licenses/by-nc/3.0/

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/

