Annotations in Java (JUnit)

Produced Eamonn de Leastar (edeleastar@wit.ie)
by:
Dr. Siobhan Drohan (sdrohan@uwit.ie)

Waterford Institute of Technology Department of Computing and Mathematics
W INSTITIUID TEICNEOLAIOCHTA PHORT LAIRGE http://www.wit.ie/

g
N chry pona ¥
ST



What are Annotations?

<—> |JaVd

. : & S— o @ nnotations
They are metadata: »

* Provide information for the compiler (and
humans) about the program.

* Not part of the program itself and don’t
affect the code they are annotating.

« Some software tools use annotations to
generate code



Where are Annotations used?

* Annotations are typically applied to declarations e.g.

 classes
* flelds
* methods, and

» other program elements.

@Test

@RunWith

@Before

@Afterclass

@After

@Parameters

@BeforeClass




Activity.java from lab04 - @Override

Compiler checks
methods are actually
Q0verride overridden. Also
public int hashCode () makes the code more

{ human-readable.
return Objects.hashCode (this.id, this. type,

this.location, this.distance)

@O0verride

public String toString()

{

return toStringHelper (this) .addValue (id)

.addValue (type)
.addValue (location)
.addValue (distance)
.addValue (route)
.toString () ;




Some Built in Annotations

- There are three annotation types that are predefined by the language
specification itself:

« @Deprecated— indicates that the marked element is deprecated and
should no longer be used. The compiler generates a warning whenever a
program uses a method, class, or field with the @Deprecated annotation.

- @QOverride annotation informs the compiler that the element is meant to
override an element declared in a superclass. It not required to use this
annotation when overriding a method, it helps to prevent errors. If a
method marked with @QOverride fails to correctly override a method in one
of its superclasses, the compiler generates an error.

- @SuppressWarnings annotation tells the compiler to suppress specific
warnings that it would otherwise generate e.g. casting errors.

https://docs.oracle.com/javase/tutorial/java/annotations/predefined.html



Junit 3

« Test class extend
TestCase

- setUp/tearDown are
overridden from TestCase

* test methods must begin
with “test” word.

{

I

import junit.framework.TestCase;

public class TestlLargest extends TestCase

private int[] arr;

public TestLargest (String name)
{

super(name);
ks
public void setUp()
{
arr = new int[] {8,9,7%;
ks
public void tearDown()
{
arr = null;
ks
public void testOrder ()
{

assertEquals(9, Largest.largest(arr));
¥

public void testOrderZz ()
{

assertEquals(9, Largest.largest(new int[
assertbEquals(9, Largest.largest(new int[
assertkEquals(9, Largest.largest(new int[

}

LJLJL




JUnit 4 include
Annotations

@Before - run
before each test
case

@After - run after
each test case

@Test - the test
case itself

No need to extend
TestCase

We will use Junit 4
from here on In.

import
import
import

import
import
import

public
{

org.junit.After;
org.junit.Before;
org.junit.Test;

static org.junit.Assert.fail;
static org.junit.Assert.assertTrue;
static org.junit.Assert.assertEquals;

class TestLargest

private int[] arr;

@Before
public void setUp()

{
¥

arr

= new int[] {8,9,7};

@After
public void tearDown()

{
¥

arr

@Test

= nhull;

public void order ()

{

assertkEquals(9, Largest.largest(arr));

}

@Test

public void dups O

i
1

assertkEquals(9, Largest.largest(new int[] { 9, 7, 9, 8 }));




=xceptions: JUnit 3 vs JUnit 4

« Use @Test (expected = ...) to specify exception

- Simpler, but less verbose

public void testEmpty (O
1
try
1
Largest.largest(new int[] {});
fail("Should have thrown an exception");
¥
catch (RuntimeException e)
1
1 assertTrue(true); @Test (expected = RuntimeException.class)
! public void testEmpty ()

1
Largest.largest(new int[] {});

¥




JUnit 4 Annotations (1)

Annotation Parameters Use

@After None Method will be executed after each test
method (similar to the tearDown () method in
JUnit 3.x). Multiple methods may be tagged
with the @After annotation, however no order
is guaranteed.

@AfterClass None Method will be executed after all of the test
methods and teardown methods have been
executed within the class. Multiple methods
may be tagged with the @AfterClass

annotation, however no order is guaranteed.

@Before None Method will be executed before each test
method (similar to the setUp() method in
JUnit 3.x). Multiple methods may be tagged
with the @Before annotation, however no
order is guaranteed.

@eforeClass None Executed before any other methods are
executed within the class. Multiple methods
may be tagged with the @BeforeClass
annotation, however no order is guaranteed.

@Ignore String (optional) Used to temporarily exclude a test method
from test execution. Accepts an optional
String reason parameter.

https://dzone.com/refcardz/junit-and-easymock



JUnit 4 Annotations (2)

@Parameters None Indicates a method that will return a
Collection of objects that match the
parameters for an available constructor in
your test. This is used for parameter driven
tests.

@RunWith Class Used to tell JUnit the class to use as the test
runner. The parameter must implement the
interface junit.runner.Runner.

@SuiteClasses Class ] Tells JUnit a collection of classes to run. Used
with the @RunWith(Suite.class) annotation
is used.

@Test ® Class(optional) Used to indicate a test method. Same

functionality as naming a method public

® Timeout(optional) | void testXYZ() in JUnit 3.x. The class
parameter is used to indicate an exception

is expected to be thrown and what the
exception is. The timeout parameter specifies
in milliseconds how long to allow a single
test to run. If the test takes longer than the
timeout, it will be considered a failure.

https://dzone.com/refcardz/junit-and-easymock



‘ ® junit.org/junits/

© Junits

Z'Unit 4

The new major version of the programmer-friendly
testing framework for Java 8

&) User Guide () Code & Issues

About

JUnit 5 is the next generation of JUnit. The goal is to create an up-to-date foundation for developer-side testing on
the JVM. This includes focusing on Java 8 and above, as well as enabling many different styles of testing.

JUnit 5 is the result of JUnit Lambda and its crowdfunding campaign on Indiegogo.

The JUnit 5 team released Milestone 2 on July 23, 2016, and is currently working on additional milestones and
ultimately a GA release (due late 2016).

S Q&A

Upcoming Events

2016-10-10
JAX London 2016 in London, UK
Nicolai Parlog

2016-11-09

Deep Dive into JUnit 5 - Devoxx Belgium 2016 in
Antwerp, Belgium

Sam Brannen




Unit @ vs. JUnit

Features

Declares a test method

Denotes that the annotated method will be executed before all test methods in the
current class

Denotes that the annotated method will be executed after all test methods in the current
class

Denotes that the annotated method will be executed before each test method
Denotes that the annotated method will be executed after each test method
Disable a test method or a test class

Denotes a method is a test factory for dynamic tests in JUnit 5

Denotes that the annotated class is a nested, non-static test class

Declare tags for filtering tests

Register custom extensions in JUnit 5

Table source: http://howtoprogram.xyz/2016/08/10/junit-5-vs-junit-4/

JUnit 5

@Test

@BeforeAll
@AfterAll

@BeforeEach
@AfterEach
@Disable
@TestFactory
@Nested
@Tag

@ExtendWith

JUnit 4

@Test

@BeforeClass
@AfterClass

@Before
@After
@Ignore
N/A

N/A
@Category

N/A

More information: https://dzone.com/articles/first-look-at-junit-5



JUNit @ vs. JUnit

 This course is using JUnit4.

- http://junit.org/junitS/docs/current/user-guide/#running-tests-ide

4.1. IDE Support

At the time of this writing there is no direct support for running tests on the JUnit Platform within IDEs. However, the
JUnit team provides two intermediate solutions so that you can go ahead and try out JUnit 5 within your IDE today. You
can use the Console Launcher manually or execute tests with a JUnit 4 based Runner.

- If you wish to investigate JUnit5, please go to this link: http://junit.org/junit5/




