
Produced
by

Agile Software Development

Dr. Siobhán Drohan (sdrohan@wit.ie)

Eamonn de Leastar (edeleastar@wit.ie)

mailto:sdrohan@wit.ie
mailto:edeleastar@wit.ie

First JUnit Tests (JUnit 3)

What is JUnit?

JUnit:

• is a Unit Testing Framework for Java.

• enables you to write and run repeatable tests.

• is used to Unit Test a small piece of code.

• When following TDD, developers should write and execute the

JUnit tests before writing any code.

JUnit Versions

• JUnit 3 (http://junit.sourceforge.net/junit3.8.1/)

• JUnit 4 (http://junit.org/junit4/)

• Version we will mainly use is 4.12

• JUnit 5 (http://junit.org/junit5/)

• First general availability release published on September 10, 2017. Bug fix

version released on October 3, 2017.

• Not supported directly in Eclipse IDE (you can use it via Maven, which we

will show you in future weeks)

http://junit.sourceforge.net/junit3.8.1/
http://junit.org/junit4/
http://junit.org/junit5/

JUnit Version 3

• As conventions differ between the versions, it is important to be

able to use Version 3 and 4 (at least) and 5 (desirable).

• In Version 3:

1. Test class must extend TestCase.

2. setUp/tearDown methods are overridden
from TestCase (note that this is optional).

3. Test methods must begin with “test” word.

http://junit.sourceforge.net/junit3.8.1/javadoc/index.html

1. Test Class must extend TestCase

http://junit.sourceforge.net/junit3.8.1/javadoc/index.html

http://junit.sourceforge.net/junit3.8.1/javadoc/index.html

import junit.framework.TestCase;

public class TestLargest extends TestCase
{

//JUnit testing code omitted
}

1. Test Class must extend TestCase

http://junit.sourceforge.net/junit3.8.1/javadoc/index.html

http://junit.sourceforge.net/junit3.8.1/javadoc/index.html

2. setUp/tearDown methods are
overridden from TestCase (note
that this is optional).

http://junit.sourceforge.net/junit3.8.1/javadoc/index.html

import junit.framework.TestCase;

public class TestLargest extends TestCase
{

public TestLargest (String name)
{

super(name);
}

public void testOrder ()
{

int[] arr = new int[3];
arr[0] = 8;
arr[1] = 9;
arr[2] = 7;
assertEquals(9, Largest.largest(arr));

}
}

3. Test methods must begin with
“test” word.

import junit.framework.TestCase;

public class TestLargest extends TestCase
{

public TestLargest (String name)
{

super(name);
}

public void testOrder ()
{

int[] arr = new int[3];
arr[0] = 8;
arr[1] = 9;
arr[2] = 7;
assertEquals(9, Largest.largest(arr));

}
}

Let’s look at Assertions now…and then we will look at a
JUnit testing a simple program.

Assertions

• To check if code is behaving as you expect

• use an assertion i.e. a simple method call that verifies that

something is true.

11

Some of the many “assertion” methods in the Assert class…

Using Asserts

You could use this assert to check
all sorts of things, including
whether numbers are equal to each
other.

15

int a = 2;
//...
assertTrue (a == 2);

Using Asserts

You could use this assert to check
all sorts of things, including
whether numbers are equal to each
other.

To check that two integers are
equal, a method that takes two
integer parameters might be more
useful.

16

int a = 2;
//...
assertTrue (a == 2);

public void assertEquals (int a, int b)
{

assertTrue(a == b);
}

Using Asserts

You could use this assert to check
all sorts of things, including
whether numbers are equal to each
other.

To check that two integers are
equal, a method that takes two
integer parameters might be more
useful.

We can now write the first test a
little more expressively:

17

int a = 2;
//...
assertTrue (a == 2);

public void assertEquals (int a, int b)
{

assertTrue(a == b);
}

int a = 2;

assertEquals (2, a);

JUnit Example

Testing code to return the largest number in a Primitive Array.

Planning Tests

• Method to test: A static method designed

to find the largest number in a list of

numbers.

• The following tests would seem to make

sense:

• [7, 8, 9] 9

• [8, 9, 7] 9

• [9, 7, 8] 9

(supplied test data expected result)

19

public static int largest (int[] list)
{
...
}

More Test Data + First Implementation

• Already have this data:

[7, 8, 9] 9

[8, 9, 7] 9

[9, 7, 8] 9

• What about this set:

[7, 9, 8, 9] 9

[1] 1

[-9, -8, -7] -7

20

public static int largest (int[] list)
{

int index, max = Integer.MAX_VALUE;

for (index = 0; index < list.length - 1; index++)
{

if (list[index] > max)
{

max = list[index];
}

}
return max;

}

(supplied test data expected result)

Writing the TestCase

• This is a TestCase called

TestLargest.

• It uses the following test

data:

[8, 9, 7] 9

• It has one Unit Test

(testOrder) - to verify the

behaviour of the largest

method.

21

import junit.framework.TestCase;

public class TestLargest extends TestCase
{

public TestLargest (String name)
{

super(name);
}

public void testOrder ()
{

int[] arr = new int[3];
arr[0] = 8;
arr[1] = 9;
arr[2] = 7;
assertEquals(9, Largest.largest(arr));

}
}

Running the TestCase

22

Lists the test
classes and all

the test methods
within them.

Lists all the tests
that failed, along

with assertion
errors.

Status of the
Automated Test

Execution.
One test ran and

that one test failed.

Running the TestCase

23

Why did the test return such a huge number instead of 9?
Where could this large number have come from?

Bug

• First line should initialize

max to zero, not

MAX_VALUE.

24

public static int largest (int[] list)
{

//int index, max = Integer.MAX_VALUE;
int index, max = 0;

for (index = 0; index < list.length - 1; index++)
{

if (list[index] > max)
{

max = list[index];
}

}
return max;

}

Further Tests

• What happens when the largest number appears in different places

in the list - first or last, and somewhere in the middle?

• Bugs most often show up at the “edges”.

• In this case, edges occur when the largest number is at the start

or end of the array that we pass in.

• Aggregate into a single unit test:

25

public void testOrder ()
{

assertEquals(9, Largest.largest(new int[] { 9, 8, 7 }));
assertEquals(9, Largest.largest(new int[] { 8, 9, 7 }));
assertEquals(9, Largest.largest(new int[] { 7, 8, 9 }));

}

Failure

26

Failure +
Fix

27

public static int largest (int[] list)
{

int index, max = 0;
//for (index = 0; index < list.length - 1; index++)
for (index = 0; index < list.length; index++)
{

if (list[index] > max)
{

max = list[index];
}

}
return max;

}

Further Boundary Conditions

• Now exercising multiple tests

28

public void testDups ()
{
assertEquals(9, Largest.largest(new int[] { 9, 7, 9, 8 }));

}

public void testOne ()
{
assertEquals(1, Largest.largest(new int[] { 1 }));

}

Failure on testNegative

29

public void testNegative ()
{

int[] negList = new int[] { -9, -8, -7 };
assertEquals(-7, Largest.largest(negList));

}

fix testNegative

• Choosing 0 to initialize

max was a bad idea;

• Should have been MIN

VALUE, so as to be less

than all negative

numbers as well.

30

public static int largest (int[] list)
{

//int index, max = 0;
int index, max = Integer.MIN_VALUE;

for (index = 0; index < list.length; index++)
{

if (list[index] > max)
{

max = list[index];
}

}
return max;

}

Expected Errors?

• If the array is empty, this is

considered an error, and an

exception should be thrown.

31

public void testEmpty ()
{

try
{

Largest.largest(new int[] {});
fail("Should have thrown an exception");

}
catch (RuntimeException e)
{

assertTrue(true);
}

}

public static int largest (int[] list)
{

int index, max = Integer.MIN_VALUE;

if (list.length == 0)
{

throw new RuntimeException("Empty list");
}
for (index = 0; index < list.length; index++)
{

if (list[index] > max)
{

max = list[index];
}

}
return max;

}

Some more TDD theory…

TDD – Common Pitfalls (individual programmer)

https://www.agilealliance.org/glossary/tdd/

• Forgetting to run tests frequently

• Writing too many tests at once

• Writing tests that are too large or coarse-grained

• Writing overly trivial tests, for instance omitting assertions

• Writing tests for trivial code, for instance accessors

https://www.agilealliance.org/glossary/tdd/

TDD – Common Pitfalls (teams)

https://www.agilealliance.org/glossary/tdd/

• Partial adoption - only a few developers on the team use TDD.

• Poor maintenance of the test suite - most commonly leading
to a test suite with a prohibitively long running time.

• Abandoned test suite (i.e. seldom or never run) - sometimes
as a result of poor maintenance, sometimes as a result of
team turnover.

https://www.agilealliance.org/glossary/tdd/

TDD – Signs of Use

• "code coverage" is a common approach to evidencing
the use of TDD; while high coverage does not guarantee
appropriate use of TDD, coverage below 80% is likely to
indicate deficiencies in a team's mastery of TDD.

• version control logs should show that test code is
checked in each time product code is checked in, in
roughly comparable amounts.

https://www.agilealliance.org/glossary/tdd/

http://en.wikipedia.org/wiki/Code_coverage
https://www.agilealliance.org/glossary/version-control/
https://www.agilealliance.org/glossary/tdd/

TDD – Code Coverage – 100% Example

TDD – Code Coverage – 85.4% Example

TDD – Code Coverage Tool

Except where otherwise noted, this content is

licensed under a Creative Commons Attribution-

NonCommercial 3.0 License.

For more information, please see

http://creativecommons.org/licenses/by-nc/3.0/

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/

