/O Streams In Java

Produced Eamonn de Leastar (edeleastar@wit.ie)

by: Dr. Siobhan Drohan (sdrohan@wit.ie)

' Waterford Institute of Technology Department of Computing and Mathematics
(e

. INSTITIUID TEICNEOLAIOCHTA PHORT LAIRGE http://www.wit.ie/

mailto:edeleastar@wit.ie
mailto:sdrohan@wit.ie

Essential Java

< Overview
% Introduction
% Syntax
<% Basics
4 Arrays
< Classes
< Classes Structure
4 Static Members

< Commonly used
Classes

4 Control Statements

© Control Statement
Types

© |If, else, switch
< For, while, do-while

< Inheritance
4 Class hierarchies
% Method lookup in Java
4 Use of this and super

< Constructors and
inheritance

- Abstract classes and
methods

4 Interfaces
< Collections

< ArraylList

% HashMap

4 |terator

% Vector

4 Enumeration

4 Hashtable

< EXxceptions
< Exception types
< Exception Hierarchy
< Catching exceptions
% Throwing exceptions
< Defining exceptions

Common exceptions and
errors

< Streams
<% Stream types
< Character streams
% Byte streams
<% Filter streams
< Object Serialization

Road Map

< Introduction to I/O Streams

< Byte-oriented I/O Streams

< Character-oriented 1/O Streams

¢ Layered I/O Streams (e.g. buffering)
< Line-oriented I/O Streams

4 Scanning

< Pacemaker 1/O

4 Further Reading:
4 Data Streams
4 Object Streams
< Command Line I/O

Introduction

4 An /O Stream represent a sequence of data:
4 a one way, sequential flow of data.

4 Conceptualise it as water flowing through a pipe.

INPUT ouTpuT

https://docs.oracle.com/javase/tutorial/essential/io/streams.html

Input Stream

< A program uses an input stream to read data

from a source, one item at a time:

Siream Frogram
> > -
Data Source 'Lummmmnm | 010010101010
- .
Ny, O /

https://docs.oracle.com/javase/tutorial/essential/io/streams.html

Output Stream

< A program uses an output stream to write data to
a destination, one item at time:

Program Stream

e
..rﬁ . -] i - I’/i
| 010010101010 {mmmmmm gla source

| /-,

N\ ¢:~‘:\\\\\\\\

d
T

https://docs.oracle.com/javase/tutorial/essential/io/streams.html

/O Streams

java.io package

“Character” Streams
(Reader/Writer)

“Byte” Streams
(InputStream/
QutputStream)

Java Program
char

(16-bit)

Byte
(8-bit)

fp—

Input Stream

'ﬁ'
Output Stream

Input Source
(keyboard, file,
network, program)

Output Sink
(console, file,
network, program)

Abstract classes In I/O Streams

java.io package

t

. F o]
i - rm =" - - o=~

" InputStream 1{ . OutputStream * /' Reader }
[|
l " "-"‘ k "'""'"'*\‘_’-J S

byte-oriented streams character-oriented streams

http://chortle.ccsu.edu/java5/notes/chap82/ioHierarchyTop.gif

Road Map

< Introduction to I/O Streams

< Byte-oriented I/O Streams

< Character-oriented 1/O Streams

¢ Layered I/O Streams (e.g. buffering)
< Line-oriented I/O Streams

4 Scanning

< Pacemaker 1/O

4 Further Reading:
4 Data Streams
4 Object Streams
< Command Line I/O

Byte-oriented Streams

Programs use byte streams to perfo
iInput and output of 8-bit bytes.

m

..........

mmmmmmmmmmmmmmmmmmm

Byte Streams (I/O of 8-bit bytes)

InputStream & OutputStream
are abstract; all descendants

are concrete.

Frequently used to read/write
from files i.e. FilelnputStream
and FileOutputStream.

ByteArrayOutputStream

ObjectinputStream

LineNumberlnputStream

AN

PipedInputStream

PushbacklnputStream

SequencelnputStream

StringBufferlnputStream

/ FileOutputStream 4. BufferedOutputStream
OutputStream FilterOutputStream DataOutputStream
\\\ ObjectOutputStream \ PrintStream
PipedOutputStream
Object
ByteArraylnputStream
BufferedIinputStream
FilelnputStream -
/ DatalnputStream
InputStream FilterinputStream

java.io package

Byte Streams I/O: Steps

. Open an input/output stream associated with a
physical device.

. Read from the opened input stream until "end-
of-stream" encountered or
Write to the opened output stream.

. Close the input/output stream.

Byte Streams I/O: Steps

In Xanadu did Kubla Khan

A stately pleasure-dome decree:
Where Alph, the sacred river, ran
through caverns measureless to man
Down to a sunless sea.

Xanadu.txt: Sample file that we wil
| use to explain Byte Streams

n

Input Stream

Xanadu d |

n

1;______J

inputStream.read (b)

!

Integer Variable

d
inputStream.write (b)
[

d

Xanadu
Output Stream

v
d

Byte Streams |I/O: CopyBytes Example

public class CopyBytes
{

{

FileInputStream in =
FileOutputStream out
try{
in =
out =
int c¢;
while ((c =
out.write(c);

}

finally{
if (in '= null) {
in.close();
}
if (out !'= null) {

out.close () ;

public static void main(String[] args) throws IOException

new FileInputStream('"xanadu.txt");
new FileOutputStream("outagain.txt");

in.read())

null;
= null;

= -1){

B outagain.txt =
1In Xanadu did Kubla Khan
2A stately pleasure-dome decree:
3Where Alph, the sacred river, ran
Athrough caverns measureless to man
5Pown to a sunless sea.

e

C' | & Secure | https://docs.oracle.com/javase/7/docs/api/java/io/InputStream. html#read()

Method Detail

read

public abstract int read()
throws IOException

Reads the next byte of data from the input stream. The value byte is returned as an int in the range @ to 255. If no
byte is available because the end of the stream has been reached, the value -1 is returned. This method blocks until
input data is available, the end of the stream is detected, or an exception is thrown.

A subclass must provide an implementation of this method.
Returns:

the next byte of data, or -1 if the end of the stream is reached.
Throws:

I0Exception - if an I/O error occurs.

Byte Streams — CopyBytes Example

< An int return type allows read() to
use -1 to indicate end of stream.

4 A finally block is used to guarantee
that both streams will be closed
even If an error occurs; this helps
avoid resource leaks.

4 |f Java was unable to open one or
both files, the associated file
stream variable won’t deviate from
Its initial null value; hence the test
for null in the finally block.

< Java 7’s try-with-resources would
be useful here.

n

Input Stream
Xanadu d i

1|;______J

inputStream.read(b)

!

Integer Variable
d

!

inputStream.write (b)
L

d

n Xanadu
Qutput Stream

v
d

CopyBytes: Before using try-with-resources

public class CopyBytes
{

public static void main(String[] args) throws IOException

{

FileInputStream in = null;

FileOutputStream out = null;
try{
in = new FileInputStream('"xanadu. txt");

out = new FileOutputStream("outagain.txt");

int c;
while ((c = in.read()) '= -1){

out.write(c);

}

}
finally{
if (in '= null) {
in.close () ;
}
if (out !'= null) {
out.close () ;

}

CopyBytes - using try-with-resources

public class CopyBytes
{

public static void main(String[] args) throws IOException
{
try (FileInputStream 1in = new FileInputStream('"xanadu.txt");
FileOutputStream out = new FileOutputStream("outagain.txt"))
{
int c;
while ((c = in.read()) !'= -1){
out.write(c);

}

) try-with-resources is a new construct in Java 7.

When the try block finishes, the resources instantiated
in the try clause are closed automatically.

All classes implementing the java.lang.AutoCloseable
interface can be used inside the try-with-resources
construct.

Road Map

< Introduction to I/O Streams
< Byte-oriented I/O Streams

< Character-oriented 1/O Streams

¢ Layered I/O Streams (e.g. buffering)
¢ Line-oriented I/O Streams

4 Scanning

< Pacemaker 1/O

4 Further Reading:
4 Data Streams
4 Object Streams
< Command Line I/O

Character-oriented Streams

Programs use character streams to perform
Input and output of 16-bit bytes
(i.e. Unicode characters).

uuuuuuuuuu

Character-oriented Streams

< Java Stores characters as Unicode.

4 But the external data source could store
characters in other character sets e.g. US-ASCII,
UTF-8, etc.

4 Character stream I/O automatically translates
Unicode character values to and from the local
character set.

¢ Working with character streams is no more
complicated than I/O with byte streams.

Character-oriented Streams

/

BufferedWriter

CharArrayWriter

FiltervWriter

Writer

Object

\

OutputStreamWriter

File\WWTriter

S

PipedWriter

Print\Writer

StringWriter

Reader

BufferedReader LineNumberReader
CharArrayReader

FilterReader PushbackReader
InputStreamReader FileReader

(=

PipedReader

/NN

StringReader

Character-oriented Streams: CopyCharacters Example

public class CopyCharacters

public static void main(String[] args) throws IOException/({
FileReader in = null;
FileWriter out = null;

try{
in = new FileReader ('"xanadu.txt");

out = new FileWriter ("outchar.txt");

int c;

while ((c = in.read()) !'= -1) {
out.write(c);

}
}
finally/{
if (in '= null) {
in.close();
}
if (out !'= null) {
out.close ()

}

&

C' | @ Secure | https://docs.oracle.com/javase/7/docs/api/java/io/Reader. html#read()

read

public int read()
throws IOException

Reads a single character. This method will block until a character is available, an 1/O error occurs, or the end of the
stream is reached.

Subclasses that intend to support efficient single-character input should override this method.

Returns:

The character read, as an integer in the range 0 to 65535 (exe0-exffff), or -1 if the end of the stream has been
reached

Throws:

IOException - If an I/O error occurs

CopyCharacters using try-with-resources

public class CopyCharacterTryWithResources
{
public static void main(String([] args) throws IOException
{
try (FileReader 1in = new FileReader ("xanadu.txt"):;
FileWriter out = new FileWriter ("outchar.txt"))
{
int c;
while ((c = in.read()) '= -1){
out.write(c):;

CopyCharacters vs CopyBytes

< CopyCharacters is very similar to CopyBytes.
4 CopyCharacters uses FileReader and FileWriter.
< CopyBytes uses FilelnputStream and FileOutputStream.

CopyCharacters vs CopyBytes

< CopyCharacters is very similar to CopyBytes.
4 CopyCharacters uses FileReader and FileWriter.
< CopyBytes uses FilelnputStream and FileOutputStream.

< Both use an int variable to read to and write from.

< CopyCharacters—> int variable holds a character value between O
and 65535.

< CopyBytes - int variable holds a byte value between 0 and 255.

CopyCharacters vs CopyBytes

< CopyCharacters is very similar to CopyBytes.
4 CopyCharacters uses FileReader and FileWriter.
< CopyBytes uses FilelnputStream and FileOutputStream.

< Both use an int variable to read to and write from.

< CopyCharacters—> int variable holds a character value between O
and 65535.

< CopyBytes - int variable holds a byte value between 0 and 255.

4 Character streams are often "wrappers" for byte streams.

< A byte stream to perform the physical I/O
4 The character stream handles translation between characters and bytes.

Road Map

< Introduction to I/O Streams
< Byte-oriented I/O Streams
< Character-oriented 1/O Streams

¢ Layered I/O Streams (e.g. buffering)

< Line-oriented I/O Streams
4 Scanning
< Pacemaker 1/0

4 Further Reading:
4 Data Streams
4 Object Streams
< Command Line I/O

Layered I/O Streams

4 /O streams are often layered (chained) with other I/O
streams e.g. for buffering, data-format conversion, etc.

FileInputStream BufferedInputStream

D.isk | lava
File y / Program
byte block of bytes
(buffer)

FileInputStream BufferedInputStream DatalnputStream

Disk : lava
File ' J J ’ Program
byte block of bytes data
(buffer) (1nt, double, etc.)

http://mww3.ntu.edu.sg/home/ehchua/programming/java/j5b_io.html

Buffered I/O

¢ So far, we have only looked at reading/writing a
single character of data:

-> grossly Inefficient e.g. each call can trigger
a disk read/write.

< To speed up the I/0O, we can read/write blocks of
bytes into a memory buffer in one single 1/O
operation.

http://mww3.ntu.edu.sg/home/ehchua/programming/java/|5b_io.html

Buffered I/O

¢ FilelnputStream/FileOutputStream Is not buffered.
But

4 You can chain it to a BufferedinputStream/
BufferedOutputStream to provide the buffering.

4 To chain streams, pass the instance of one stream
to the constructor of another.

FileInputStream BufferedInputStream

i Java
Disk , >

File ' / Program
byte block of bytes
(buffer)

http://mww3.ntu.edu.sg/home/ehchua/programming/java/|5b_io.html

Buffered 1/O - CopyCharacter

public class CopyCharacterBuffer

{
public static void main(String[] args) throws IOException
{
try (BufferedReader 1in = new BufferedReader (new FileReader ("xanadu.txt")):;
BufferedWriter out = new BufferedWriter (new FileWriter ("outchar.txt")))
{
Bt G
while ((c = in.read()) '= -1){

out.write(c):;

BufferedWriter

CharArrayWriter

FilterWriter

Writer

OutputStreamWriter |— FileWriter

PipedWriter

Print\Writer

String\Writer

/

[Object

BufferedReader

|—| LineNumberReader|

CharArrayReader

FilterReader

Reader

|—| PushbackReader |

InputStreamReader |_| FileReader |

PipedReader

StringReader

WY/

Flushing Buffers

< There are four buffered stream classes used to wrap
unbuffered streams:

< BufferedInputStream and BufferedOutputStream for byte streams
< BufferedReader and BufferedWriter for character streams

4 [t often makes sense to write out a buffer at critical points,
without waiting for it to fill.

< This is known as flushing the buffer.

©More info on flushing buffers here:
https://docs.oracle.com/javase/tutorial/essential/io/buffers.html

http://java.sun.com/javase/6/docs/api/java/io/BufferedInputStream.html
http://java.sun.com/javase/6/docs/api/java/io/BufferedOutputStream.html
http://java.sun.com/javase/6/docs/api/java/io/BufferedReader.html
http://java.sun.com/javase/6/docs/api/java/io/BufferedWriter.html
https://docs.oracle.com/javase/tutorial/essential/io/buffers.html

Road Map

% Introduction to I/O Streams

< Byte-oriented I/O Streams

< Character-oriented 1/O Streams

¢ Layered I/O Streams (e.g. buffering)

< Line-oriented I/O Streams

4 Scanning
< Pacemaker 1/O

4 Further Reading:
4 Data Streams
4 Object Streams
< Command Line I/O

Line-Oriented I/O

4 Character I/O usually occurs in bigger units than single
characters.

4 One common unit is the line:
4 a string of characters with a line terminator at the end.

4 A line terminator can be, depending on the OS:
< a carriage-return and line-feed sequence ("\r\n")
< a single carriage-return ("\r")
¢ a single line-feed ("\n").

java.lo.BufferedReader

readLine

public String readLine()
throws IOException

Reads a line of text. A line is considered to be terminated by any one of a line feed ("\n'), a carriage return ('\r'), or a
carriage return followed immediately by a linefeed.

Returns: Supporting all possible line terminators

A String containing the contents of the line, not including any line-termination characters, or null if the end of the
stream has been reached

Throws:
I0Exception - If an I/O error occurs

See Also:

Files.readAllLines(java.nio.file.Path, java.nio.charset.Charset)

java.lo.PrintWriter

printin
public void println(String x)

Prints a String and then terminates the line. This method behaves as though it invokes print(String) and then
println().

Parameters:

x - the String value to be printed

Using this class, gives access to the
println series of methods; FileWriter
only ouptuts character by character.

Note: there is no PrintReader equivalent.

Line-Oriented I/O Example (characters)

public static void main(String[] args) throws IOException

{
try (BufferedReader in =

new BufferedReader (new FileReader ("xanadu.txt"));

PrintWriter out =
new PrintWriter (
new BufferedWriter (

new FileWriter ("characteroutput.txt™))))

—
|

{
String 1;
while ((1 = in.readLine()) !'= null) {
out.println(1l);
BufferedWriter
} CharArrayWriter
} FilterWriter |

OutputStreamWriter — FileWriter _

PipedWriter

Print\Writer

StringWriter

-

[Reader |

BufferedReader |—| LineNumberReader|
CharArrayReader |
FilterReader |—| PushbackReader |

InputStreamReader

PipedReader

}—[FileReader -
|

StringReader

Road Map

% Introduction to I/O Streams

< Byte-oriented I/O Streams

< Character-oriented 1/O Streams

¢ Layered I/O Streams (e.g. buffering)
< Line-oriented I/O Streams

4 Scanning

« Pacemaker 1/0O

4 Further Reading:
4 Data Streams
4 Object Streams
< Command Line I/O

Class Scanner

java.lang.Object
java.util.Scanner

All Implemented Interfaces:

Closeable, AutoCloseable, Iterator<String>

public final class Scanner
extends Object
implements Iterator<String>, Closeable

A simple text scanner which can parse primitive types and strings using_

regular expressions.

A Scanner breaks its input into tokens using a delimiter pattern, which by
default matches whitespace. The resulting tokens may then be converted
into values of different types using the various next methods.

o

Scanning

4 By default, a Scanner uses white space to separate
tokens.

< To use a different token separator, invoke useDelimiter(),
specifying a regular expression (i.e. a sequence of
symbols and characters expressing a string/pattern).

4 Even though a scanner is not a stream, you need to close
It to indicate that you're done with its underlying stream.

ScanFile

public class ScanFile
{
public static void main(String[] args) throws IOException

{

Scanner s = null;
try
{
s = new Scanner (new BufferedReader (

new FileReader ("xanadu.txt")));
while (s.hasNext())

{
System.out.println(s.next());
}
}

finally
o This class reads in
P the individual words in
s.close () ; th_e xanadu.txt file and
} prints them out to the

) console, one per line.

Translating Individual Tokens

public class ScanSum

{

public static void main(String[] args) throws IOException

{

Scanner s = null;
double sum = O;

try{
s = new Scanner (new BufferedReader (new FileReader ("usnumbers.txt")));

while (s.hasNext()) {

if (s.hasNextDouble()) { usnumbers.txt
sum += s.nextDouble() ; 45
} 3 Console output
else({ 4
s.next () ; 6
}
) rogue text 75.86
} 8.4
finally/{ 3
} s.close(); more rogue text
System.out.println (sum) ; 6.46

Road Map

% Introduction to I/O Streams

< Byte-oriented I/O Streams

< Character-oriented 1/O Streams

¢ Layered I/O Streams (e.g. buffering)
< Line-oriented I/O Streams

4 Scanning

« Pacemaker 1/0O

4 Further Reading:
4 Data Streams
4 Object Streams
< Command Line I/O

Abstract the mechanism

package utils;

public interface Serializer
{
void push (Object o) ;
Object pop();
void write() throws Exception;
void read() throws Exception;

}

Defining this interface will allow us to build different
serialization strategies e.g. XML, JSON, etc.

We can decide which to use at compile time, or at run
time.

Different Serializers

public class XMLSerializer implements Serializer

{

private Stack stack = new Stack(); public class BinarySerializer

private File file; implements Serializer

{

public XMLSerializer (File file)

{ private Stack stack = new Stack();
this.file = file; private File file;

}

public BinarySerializer (File file)

//more code {

this.file = file;
}

public class JSONSerializer implements Serializer

{

private Stack stack = new Stack();
private File file;

public JSONSerializer (File file)

{
this.file = file;

//more code

Deciding at compile time

public Main() throws Exception
{
/ /XML Serializer
//File datastore = new File("datastore.xml");
//Serializer serializer = new XMLSerializer (datastore);

//JSON Serializer
//File datastore = new File("datastore.json");
//Serializer serializer = new JSONSerializer (datastore);

//Binary Serializer
File datastore = new File("datastore.txt");
Serializer serializer = new BinarySerializer (datastore) ;

Deciding at runtime

Welcome to pacemaker-console - ?help for instructions

pm> ?la

abbrev name params

1lu list-users ()

cu create-user (first name, last name, email, password)
lu list-user (email)

lius list-user (1d)

la list-activities (userid, sortBy: type, location, distance, date,
duration)

la list-activities (user id)

du delete-user (1d)

aa add-activity (user-id, type, location, distance,
datetime, duration)

al add-location (activity-id, latitude, longitude)

cff change-file-format (file format: xml, json)

1 load ()

s store ()

pm>

Binary Strategy

public class BinarySerializer implements ISerializationStrategy

{

public Object read(String filename) throws Exception
{
ObjectInputStream is = null;

Object obj = null;

try
{
is = new ObjectInputStream(new BufferedInputStream (

new FileInputStream(filename))) ;
obj = is.readObject() ;
}
finally
{
if (is !'= null)
{
is.close() ;
}
}

return obj;

44

Binary Strategy (contd.)

public class BinarySerializer implements ISerializationStrategy

{

//..

public void write(String filename, Object obj) throws Exception

{

ObjectOutputStream os = null;
try
{
os = new ObjectOutputStream(new BufferedOutputStream (

new FileOutputStream(filename))) ;
os.writeObject (obj) ;
}
finally
{
if (os !'= null)
{

os.close() ;

}

45

XML Strategy

public class XMLSerializer implements ISerializationStrategy

{
public Object read(String filename) throws Exception
{

ObjectInputStream is = null;
Object obj = null;

try
{
XStream xstream = new XStream(new DomDriver());
is = xstream.createObjectInputStream(new FileReader (filename)) ;
obj = is.readObject() ;
}
finally
{
if (is !'= null)
{
is.close() ;
}
}

return obj;

16

XML Strategy (contd.)

public class XMLSerializer implements ISerializationStrategy
{
//...
public void write(String filename, Object obj) throws Exception
{
ObjectOutputStream os = null;

try
{
XStream xstream = new XStream(new DomDriver());
os = xstream.createObjectOutputStream(new FileWriter (filename)) ;
os.writeObject (obj) ;
}
finally
{
if (os !'= null)
{

os.close() ;

}

47

Road Map

% Introduction to I/O Streams

< Byte-oriented I/O Streams

< Character-oriented 1/O Streams

¢ Layered I/O Streams (e.g. buffering)
< Line-oriented I/O Streams

4 Scanning

< Pacemaker 1/O

4 Further Reading:

< Data Streams

% Object Streams
< Command Line I/O

Data Streams

4 Data streams support binary
I/O of primitive data type
values (boolean, char, byte,
short, int, long, float, and
double) as well as String
values.

< All data streams implement
either the Datalnput interface
or the DataOutput interface.

< The most widely-used
Implementations of these
Interfaces are
DatalnputStream and
DataOutputStream.

ByteArrayOutputStream

|

A FileOutputStream | BufferedOutputStream
| OutputStream FilterOutputStream DataOutputStream
ObjectOutputStream l PrintStream
PipedOutputStream I
Object |
ByteArraylnputStream l
BufferedinputStream
/ FilelnputStream |
DatalnputStream
[InputStream —{FilterinputStream

ObjectinputStream

LineNumberlnputStream

N

PipedinputStream

PushbacklnputStream

\

SequencelnputStream

StringBufferinputStream

|
|
|

http://java.sun.com/javase/6/docs/api/java/io/DataInput.html
http://java.sun.com/javase/6/docs/api/java/io/DataOutput.html
http://java.sun.com/javase/6/docs/api/java/io/DataInputStream.html
http://java.sun.com/javase/6/docs/api/java/io/DataOutputStream.html

DataStream (1)

public class DataStream

{

static final String dataFile = "invoicedata';,
static final double[] prices = { 19.99, 9.99, 15.99, 3.99, 4.99 };,
static final int[] units = { 12, 8, 13, 29, 50 };,
static final String[] descs = { "Java T-shirt"”, "Java Mug",
"Duke Juggling Dolls",
"Java Pin", "Java Key Chain"};

public static void main(String[] args) throws IOException
{
DataOutputStream out = new DataOutputStream (
new BufferedOutputStream(new FileOutputStream(dataFile))),

for (int i = 0; i < prices.length,; i++)
{
out.writeDouble (prices[i]) ,
out.writeInt(units[i]),
out.writeUTF (descs[i]) ,

}

out.close() ;

//..continued

DataStream (2)

//..continued
DataInputStream in = new DataInputStream(
new BufferedInputStream (

new FileInputStream(dataFile)));
double price;

int unit;
String desc;
double total = 0.0;
try
{
while (true)
{
price = in.readDouble() ;
unit = in.readInt();
desc = in.readUTF () ;
System.out. format ("You ordered %d units of %s at $%.2f%n",
unit, desc, price);,
total += unit * price;
}
}
catch (EOFException e)
{
System.out.println ("End of file");
}

Data Streams Observations

4 The writeUTF method writes out String values in a
modified form of UTF-8.

4 A variable-width character encoding that only needs a single byte
for common Western characters.
< Generally, we detect an end-of-file condition by catching
EOFEXception, instead of testing for an invalid return
value.

< Each specialized write in DataStreams is exactly matched
by the corresponding specialized read.

< Floating point numbers not recommended for monetary
values
4 In general, floating point is bad for precise values.
< The correct type to use for currency values is
|ava.math.BigDecimal.
< Unfortunately, BigDecimal is an object type, so it won't
work with data streams — need Object Streams.

32

http://java.sun.com/javase/6/docs/api/java/io/EOFException.html
http://java.sun.com/javase/6/docs/api/java/math/BigDecimal.html

Road Map

% Introduction to I/O Streams

< Byte-oriented I/O Streams

< Character-oriented 1/O Streams

¢ Layered I/O Streams (e.g. buffering)
< Line-oriented I/O Streams

4 Scanning

< Pacemaker 1/O

4 Further Reading:
< Data Streams

4 Object Streams

& Command Line 1/O

Object Streams

4 Data streams support I/O of primitive data types

4 Object streams support I/O of objects

<A class that can be serialized implements the marker interface
Serializable.

< The object stream classes are ObjectinputStream and
ObjectOutputStream.

< An object stream can contain a mixture of primitive and object
values

< If readObject() doesn't return the object type expected,
attempting to cast it to the correct type may throw a
ClassNotFoundException.

33

http://java.sun.com/javase/6/docs/api/java/io/Serializable.html
http://java.sun.com/javase/6/docs/api/java/io/ObjectInputStream.html
http://java.sun.com/javase/6/docs/api/java/io/ObjectOutputStream.html
http://java.sun.com/javase/6/docs/api/java/lang/ClassNotFoundException.html

public class ObjectStreams

ObjectStreams

{

static final String dataFile = "invoicedata'",
static final BigDecimal[] prices = {new BigDecimal ("19.99"),
new BigDecimal ("9.99"),
new BigDecimal("15.99"),
new BigDecimal("3.99"),
new BigDecimal ("4.99") 1};
static final int[] units = { 12, 8, 13, 29, 50 },
static final String[] descs = { "Java T-shirt", "Java Mug"”,
"Duke Juggling Dolls",
"Java Pin", "Java Key Chain" };
public static void main(String[] args)
throws IOException, ClassNotFoundException
{
ObjectOutputStream out = null;
try
{
out = new ObjectOutputStream (
new BufferedOutputStream(new FileOutputStream(dataFile))),
out.writeObject (Calendar.getInstance()),
for (int 1 = 0; i < prices.length; i++)
{
out.writeObject (prices[i])
out.writelInt(units/[i]),
out.writeUTF (descs[i])

}
finally

{

out.close();

}
/1/..
}

34

ObjectInputStream in = null; O bj e CtSt re a m S

try

{

in = new ObjectInputStream
new BufferedInputStream(new FileInputStream(dataFile)));,
Calendar date = null;
BigDecimal price;
int unit;
String desc;
BigDecimal total = new BigDecimal (0) ;

date = (Calendar) in.readObject();

System.out. format ("On %tA, %<tB 3%<te, %<tY:%n'", date);,
try
{
while (true)
{
price = (BigDecimal) in.readObject() ;
unit = in.readInt();
desc = in.readUTF() ;
System.out. format ("You ordered %d units of $%$s at $%.2f%n" ,unit, desc, price);,
total = total.add(price.multiply (new BigDecimal (unit))) ;

}

catch (EOFException e)

{

}

System. out. format ("For a TOTAL of: $%.2f%n'", total);,
}
finally

{

in.close() ;

readObject() and writeObject()

4 The writeObject and readObject methods contain some
sophisticated object management logic.

4 This Is particularly important for objects that contain
references to other objects.

< |f readODbject Is to reconstitute an object from a stream, it
has to be able to reconstitute all the objects the original
object referred to.

4 These additional objects might have their own references, and so
on.

4 In this situation, writeObject traverses the entire web of
object references and writes all objects in that web onto
the stream. Thus a single invocation of writeObject can
cause a large number of objects to be written to the
stream. 2

Stream
writeObject (a) ——P cedba —J readObject ()

" £
23 23

4 Suppose:
< If writeObject is invoked to write a single object named a.
< This object contains references to objects b and c,
<while b contains references to d and e.

4 Invoking writeobject(a) writes a and all the objects necessary
to reconstitute a

< When a is read by readObject, the other four objects are read
back as well, and all the original object references are
preserved.

37

Road Map

% Introduction to I/O Streams

< Byte-oriented I/O Streams

< Character-oriented 1/O Streams

¢ Layered I/O Streams (e.g. buffering)
< Line-oriented I/O Streams

4 Scanning

< Pacemaker 1/O

4 Further Reading:

< Data Streams
< Object Streams

- Command Line I/O

Command Line I/O

4 A program is often run from the command line, and
Interacts with the user in the command line environment.

4 The Java platform supports this kind of interaction in two
ways:
¢ Standard Streams
4 Console

21

Standard Streams

< A feature of many operating systems, they read input from
the keyboard and write output to the display.

4 They also support I/O on files and between programs.

4 The Java platform supports three Standard Streams:
4 Standard Input, accessed through System.in;
4 Standard Output, accessed through System.out;
< Standard Error, accessed through System.err.

4 These objects are defined automatically (do not need to
be opened)

4 Standard Output and Standard Error are both for output

4 Having error output separately allows the user to divert
regular output to a file and still be able to read error
messages.

22

System.in, System.out, System.err

< For historical reasons, the standard streams are byte
streams (more logically character streams).

4 System.out and System.err are defined as PrintStream
objects.

4 Although it is technically a byte stream, PrintStream
utilises an internal character stream object to emulate
many of the features of character streams.

< By contrast, System.in is a byte stream with no character
stream features.

4 To utilise Standard Input as a character stream, wrap
System.in in InputStreamReader.
InputStreamReader cin = new InputStreamReader(System.in);

23

http://java.sun.com/javase/6/docs/api/java/io/PrintStream.html

Console

< New In Java 6 - a more advanced alternative to the
Standard Streams

4 This Is a single pre-defined object of type Console that
has most of the features provided by the Standard
Streams.

4 The Console object also provides input and output
streams that are true character streams, through its
reader and writer methods.

< Before a program can use the Console, it must attempt to
retrieve the Console object by invoking System.console().
< If the Console object is available, this method returns it.

< If it returns NULL, then Console operations are not permitted,
either because the OS doesn't support them, or because the
program was launched in a non-interactive environment.

24

http://java.sun.com/javase/6/docs/api/java/io/Console.html

Password Entry

4 The Console object supports secure password entry
through its readPassword method.

4 This method helps secure password entry in two ways:

< |t suppresses echoing, so the password is not visible on the users
screen.

4 readPassword returns a character array, not a String, so that the
password can be overwritten, removing it from memory as soon
as it is no longer needed.

25

Password (1)

public class Password

{

public static void main(String[] args) throws IOException

{

Console c = System.console();,

if (c == null)

{
System.err.println('""No console.");,
System.exit (1),

}

String login = c.readLine("Enter your login: ");
char[] oldPassword = c.readPassword("Enter your old password: ");

//..

26

Password (2)

}

//..
if (verify(login, oldPassword))
{
boolean noMatch;
do

{

char[] newPasswordl = c.readPassword("Enter your new password:
char[] newPassword2 = c.readPassword("Enter new password again:

noMatch = 'Arrays.equals (newPasswordl, newPassword?2),
if (noMatch)

{
c.format ("Passwords don't match. Try again.%n");
}
else
{
change (login, newPasswordl),
c.format ("Password for %s changed.%n", login);

}

Arrays.fill (newPasswordl, ' ');
Arrays.fill (newPassword2, ' ');
}
while (noMatch) ;

}
Arrays.fill (oldPassword, ' ');

");
");

27

format method

4 System.out.format("The value of "
+ "the float variable is "
+ "%f, while the value of the "
+ "Integer variable is %d, "
+ "and the string Is %s",

4 floatVar, intVar, stringVar);

4 Format specifiers begin with a percent sign (%)
and end with a converter.

https://docs.oracle.com/javase/8/docs/api/java/util/Formatter.html

Method Summary

wolid

flushi)
Flushes the consele and forces any buffered cutput to be wntten immediately |

Console

Tformat (Ztring fwt, Ohject... args)
Writes a formatted string to this consele's output stream using the specified format string
and arouments.

Conzole

printf (String format, Ohiject... ards)

& conventence tethod to write a formatted string to this console's output strearn using
the specified format stiing and argumernts.

Reader reader |::|
Eetriewes the unique Reader obiject assoctated wath thiz console.
SLring |readLine ()
Eeads a single line of text from the console.
String|yeadline (String fwt, Chiect... args)
Prowides a formatted prompt, then reads a single line of text from the console.
char[] |readPassword ()
Eeads a password or passphrase from the console with echoing disabled
char[] |readPassword (3tring fmt, Ckhiect... args)
Prowides a formatted prompt, then reads a password or passphrase from the console
with echoing dizabled.
FPrintlilriter

writer ()

Eetrieves the unique PrintWriter object associated with this console.

28

OIS

Except where otherwise noted, this content is
licensed under a Creative Commons
Attribution-NonCommercial 3.0 License.

For more information, please see
http://creativecommons.org/licenses/by-nc/3.0/

-,l"_"l Waterford Institute of Technology O elea rning

pl\ g WSTITIOND TEICNEOLAIDCHTA PHORT LARCE S0 FJ'I.:IUTL unit

T

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/

