
Using Collections
An introduction to the Java Programming Language

Produced
by:

Eamonn de Leastar (edeleastar@wit.ie)
Dr. Siobhan Drohan (sdrohan@wit.ie)

Agenda

• Generic Collections
• Reviewing the Collection Interface
• Summary of Features & Performance
• Working with Collections

Generic Collections
• Collections use polymorphism to store objects of any type.
• A drawback is type loss on retrieval.

HashMap numberDictionary = new HashMap();

numberDictionary.put("1", "One");
numberDictionary.put("2", "Two");

Object value = numberDictionary.get("1”);
String strValue = (String) value;

• HashMap stores
key/value pairs
as java Objects.

• get() method
returns a
matching Object
for the given key.

Generic Collections
• Collections use polymorphism to store objects of any type.
• A drawback is type loss on retrieval.

HashMap numberDictionary = new HashMap();

numberDictionary.put("1", "One");
numberDictionary.put("2", "Two");

Object value = numberDictionary.get("1”);
String strValue = (String) value;

• HashMap stores
key/value pairs
as java Objects.

• get() method
returns a
matching Object
for the given key.

• The key/values in this code are actually Strings
• The return value must be type cast back to a String in order

to accurately recover the stored object.

Untyped = Unsafe

• Type casting is undesirable (due to possibility of run time
errors).

• Therefore, use of untyped (pre-Java 5) collections is
considered ‘unsafe’.

• Typed collections avoid type loss.
• Runtime checks are simplified because the type is known.

Revised syntax

• The type of object to be stored is indicated on declaration:

private ArrayList<String> notes;

• ... and on creation:

notes = new ArrayList<String>();

• Collection types are parameterized.

Using a typed collection
ArrayList list = new ArrayList();

list.add("First element");
list.add("Second element");

String first = (String)list.get(0);
String second = (String)list.get(1);

ArrayList<String> list = new ArrayList<String>();

list.add("First element");
list.add("Second element");

String first = list.get(0);
String second = list.get(1);

untyped / unsafe

typed / safe

Using a Typed Iteration
ArrayList list = new ArrayList();

Iterator iterator = list.iterator();
while (iterator.hasNext()
{

String element = (String)iterator.next();
System.out.println(element);

}

ArrayList<String> list = new ArrayList<String>();

Iterator<String> iterator = list.iterator();
while (iterator.hasNext())
{

String element = iterator.next();
System.out.println(element);

}

untyped / unsafe

typed / safe

Typed HashMaps

• HashMaps operate with (key,value) pairs.
• A typed HashMap required two type parameters:

private HashMap<String, String> responses;
...
responses = new HashMap<String, String> ();

HashMaps
HashMap numberDictionary = new HashMap();

numberDictionary.put("1", "One");
numberDictionary.put("2", "Two");

Object value = numberDictionary.get(“1”);
String strValue = (String) value;

HashMap<String,String> numberDictionary =
new HashMap<String,String>();

numberDictionary.put("1", "One");
numberDictionary.put("2", "Two");

String value = numberDictionary.get(“1”);

untyped / unsafe

typed / safe

for-each loop (pseudo code)

for(ElementType element : collection) {
loop	body

}	

For	each	element in	collection,	do	the	things	in	the	loop	body.

for keyword

Statement(s)	to	be	repeated

Pseudo-code	expression	of	the	actions	of	a	
for-each	loop

General	form	of	the	for-each	loop

11
If	a	collections	provides	an	Iterator,	the	enhanced	for	loop	simplifies	code.

For-each Loop
• Iteration over collections is a common operation.
• If a collections provides an Iterator, Enhanced for loop

simplifies code
ArrayList<String> list = new ArrayList<String>();
//…
Iterator <String> iterator = list.iterator();
while (iterator.hasNext())
{
String element = iterator.next();
System.out.println(element);

}

ArrayList<String> list = new ArrayList<String>();
//…
for (String element : list)
{
System.out.println(element);

}
For-each loop

Standard while loop

Agenda

• Generic Collections
• Reviewing the Collection Interface
• Summary of Features & Performance
• Working with Collections

Collections Framework

14

Collection
Interface

• Collection	is	the	root	of	the	collection	hierarchy
• There	is	no	direct	implementation	of	this	interface	in	JDK
• Concrete	implementations	are	provided	for	its	subtypes

Collection Interface

16

Agenda

• Generic Collections
• Reviewing the Collection Interface
• Summary of Features & Performance
• Working with Collections

Collection Summary
Class Map Set List Ordered Sorted Allow Duplicates

HashSet X No No No

TreeSet X Sorted By natural order or
custom comparison rules

No

LinkedHashSet X By insertion order No No

ArrayList X By index No Yes

Vector X By index No Yes

LinkedList X By index No Yes

HashMap X No No No duplicate key
allowed

Hashtable X No No No duplicate key
allowed

TreeMap X Sorted By natural order or
custom comparison rules

No duplicate key
allowed

LinkedHashMap X By insertion order
or last access order

No No duplicate key
allowed

Java Collection Performance

https://dzone.com/articles/java-collection-performance
19

Java Collection Performance

https://dzone.com/articles/java-collection-performance
20

Compiler warnings for untyped collections

21

Compiler warnings for untyped (= unsafe) collections

22

Type Inference

± Since Java 7, type inference applies to collections (<>) :
± Map<String, String> myMap = new HashMap<>();

<> is required.

23

Defining Collections

For	more	maintainable code,	define	collections	like	this:

List<Product>	products													 =	new	ArrayList<Product>();
Map<String,	String>	addresses	 =	new	HashMap<String,	String>();
Set<String>	words																					 =	new	HashSet<String>();

Why?

24

Defining Collections

If	we	want	to	use	a	LinkedList instead	of	an	ArrayList
àminor	changes	in	the	class	i.e.

new	ArrayList<Product>();
becomes

new	LinkedList<Product>();

and	import	java.util.LinkedList;
25

For	more	maintainable code,	define	collections	like	this:

List<Product>	products													 =	new	ArrayList<Product>();
Map<String,	String>	addresses	 =	new	HashMap<String,	String>();
Set<String>	words																					 =	new	HashSet<String>();

Why?

while vs for-each

List<String> list = new ArrayList<String>();
//…
Iterator <String> iterator = list.iterator();
while (iterator.hasNext())
{
String element = iterator.next();
System.out.println(element);

}

List<String> list = new ArrayList<String>();
//…
for (String element : list)
{
System.out.println(element);

}
for-each loop

Standard while loop

26

Summary

The Java Collections Framework
hierarchy consists of two distinct
interface trees:
The first tree starts with
the Collection interface, which provides
for the basic functionality used by all
collections
± Set: does not allow duplicate elements.

Useful for storing collections such as a
deck of cards or student records.

± List: provides for an ordered collection,
for situations in which you need precise
control over where each element is
inserted. You can retrieve elements from
a List by their exact position..

27

± The second tree starts with
the Map interface, which
maps keys and values.

An indexed sequence that grows and shrinks
dynamicallyArrayList

An ordered sequence that allows efficient
insertions and removal at any locationLinkedList

A double-ended queue that is implemented as a
circular arrayArrayDeque

An unordered collection that rejects duplicatesHashSet

A sorted setTreeSet

A set that remembers the order in which elements
were insertedLinkedHashSet

A collection that allows efficient removal of the
smallest elementPriorityQueue

A data structure that stores key/value associationsHashMap
28

29

Concurrent Collections

Used in the context of multi-threaded applications (beyond scope
of this course)

Useful References

30

