
Collections
An introduction to the Java Programming Language

Produced
by:

Eamonn de Leastar (edeleastar@wit.ie)
Dr. Siobhan Drohan (sdrohan@wit.ie)

Agenda

±The Collection Framework
± Interfaces

± Collection
± List
± Set
± Map
± Iterator

± Implementations
± ArrayList
± HashMap
± HashSet

2

What are Collections?
± Collections	are	Java	objects

that	group	multiple	elements	
into	a	single	unit.
± Represent	data	items	that	form	

a	natural	group	e.g.	users,	
locations,	activities.

± Collections	store,	retrieve,	
and	manipulate	other	Java	
objects
± Any	Java	object	may	be	part	of	a	

collection,	so	collection	can	
contain	other	collections.

± Collections	do	not	store	
primitives.

Benefits:
• Reusability
• Uniformity
• Faster	development
• Higher	quality
• Interoperability
• Less	programming

4

?

Collection Architecture

±Interfaces - abstract data types
representing collections

±Implementation - concrete
implementation of collection
interfaces

±Algorithms - methods for
manipulating collection objects
(e.g. sorting, searching, shuffling,
etc).

Interfaces

• Collection “uses” Iterator
• Map “uses” Collection
• Set extends Collection (subtyping)
• List extends Collection (subtyping)

Collection Interface

• Collection represents a group of objects
• These collection objects are known as collection elements

• There is no direct implementation of this interface in JDK
• Concrete implementations are provided for subtypes

• Collections in general can allow duplicate elements, and
can be ordered
• Unordered collections that allow duplicate elements should

implement directly Collection interface

Adding Elements

In general two methods are defined for adding elements to
the collection:

interface Collection
{

//…
/**
* Adds element to the receiver.
* Returns true if operation is successful, otherwise returns false.
*/

boolean add(Object element);

/**
* Adds each element from collection c to the receiver.
* Returns true if operation is successful, otherwise returns false.
*/

boolean addAll(Collection c);
}

Removing Elements

interface Collection
{

//…
/**
* Removes element from the receiver.
* Returns true if operation is successful, otherwise returns false.
*/

boolean remove(Object element);

/**
* Removes each element contained in collection c from the receiver.
* Returns true if operation is successful, otherwise returns false.
*/

boolean removeAll(Collection c);
}

Similarly to adding protocol, there are two methods are
defined for removing elements from the collection:

Other Collection Methods

Includes methods for:
• Checking how many elements are in the collection
• Checking if an element is in the collection
• Iterating through collection

boolean contains(Object element);
boolean containsAll(Collection c);
int size();
boolean isEmpty();
void clear();
boolean retainAll(Collection c);
Iterator iterator;

Iterator Interface
• Defines a protocol for iterating through a collection:

public interface Iterator
{
/**
* Returns whether or not the underlying collection has next
* element for iterating.
*/
boolean hasNext();

/**
* Returns next element from the underlying collection.
*/
Object next();

/**
* Removes from the underlying collection the last element returned by next.
*/
void remove();

}

Set Interface
• Set is a collection that does not contain duplicate

elements
• This is supported by additional behavior in constructors and add(),

hashCode(), and equals() methods
• All constructors in a set must create a set that does not contain

duplicate elements
• It is not permitted for a set to contain itself as an element
• If set element changes, and that affects equals

comparisons, the behavior of a set is not specified

List Interface

• List represents an ordered collection
• Also known as sequence

• Lists may contain duplicate elements
• Lists extend behavior of collections with operations for:

• Positional Access
• Search
• List Iteration
• Range-view

Map Interface

• Map is an object that maps keys to values
• Keys must be unique, i.e. map cannot contain duplicate keys
• Each key in the map can map to most one value, i.e. one key

cannot have multiple values
• Map interface defines protocols for manipulating keys and

values

Most Commonly Used Collections

• Three of the most
commonly used
collections:
• HashSet
• ArrayList
• HashMap

ArrayList

• Represents resizable-array implementation of the List
interface
• Permits all elements including null

• It is generally the best performing List interface
implementation

• Instances of this class have a capacity
• It is size of the array used to store the elements in the list, and it’s

always at least as large as the list size
• It grows as elements are added to the list

ArrayList Examples
//declare list
ArrayList list = new ArrayList();

//add elements to the list
list.add("First element");
list.add("Second element");

//get the list size
int listSize = list.size();

//print the list size and the first element
System.out.println(listSize);
System.out.println(list.get(0));

//add first element in the list
list.add(0,"Added element");

//get the list iterator
Iterator iterator = list.iterator();
while (iterator.hasNext())
{

String element = (String)iterator.next();
System.out.println(element);

}

2
First element

Console

Added element
First element
Second element

Console

HashMap
• Collection that contains pair of objects

• Values are stored at keys
• It is a hash table based implementation of the Map interface

• Permits null values and null keys
• The order of the map is not guaranteed

• Two parameters affect performance of a hash map:
• Initial capacity, indicates capacity at the map creation time
• Load factor, indicates how full the map should be before increasing its

size
• 0.75 is the default

HashMap Example
//create a number dictionary
HashMap numberDictionary = new HashMap();
numberDictionary.put("1", "One");
numberDictionary.put("2", "Two");
numberDictionary.put("3", "Three");
numberDictionary.put("4", "Four");
numberDictionary.put("5", "Five");

//get an iterator of all the keys
Iterator keys = numberDictionary.keySet().iterator();
while (keys.hasNext())
{

String key = (String)keys.next();
String value = (String)numberDictionary.get(key);
System.out.println("Number: " + key + ", word: " + value);

}

Number: 5, word: Five
Number: 4, word: Four
Number: 3, word: Three
Number: 2, word: Two
Number: 1, word: One

Console

HashSet

• Concrete implementation of the Set interface
• Backed up by an instance of HashMap
• Order is not guaranteed

• Performance of the set is affected by size of the set and
capacity of the map
• It is important not to set the initial capacity too high, or the load

factor too low if performance of iteration is important
• Elements in the set cannot be duplicated

HashSet Example

//create new set
HashSet set = new HashSet();

//add elements to the set
set.add("One");
set.add("Two");
set.add("Three");

//elements cannot be duplicated in the set
set.add("One");

//print the set
System.out.println(set);

[One, Three, Two]
Console

22

23

