
Java Classes
An introduction to the Java Programming Language

Produced
by:

Eamonn de Leastar (edeleastar@wit.ie)
Dr. Siobhan Drohan (sdrohan@wit.ie)

Essential Java
± Overview

± Introduction
± Syntax
± Basics
± Arrays

± Classes
± Classes Structure
± Static Members
± Commonly used

Classes
± Control Statements

± Control Statement
Types

± If, else, switch
± For, while, do-while

± Inheritance
± Class hierarchies
± Method lookup in

Java
± Use of this and super
± Constructors and

inheritance
± Abstract classes and

methods
Interfaces

± Collections
± ArrayList
± HashMap
± Iterator
± Vector
± Enumeration
± Hashtable

± Exceptions
± Exception types
± Exception Hierarchy
± Catching exceptions
± Throwing exceptions
± Defining exceptions
Common exceptions

and errors
± Streams

± Stream types
± Character streams
± Byte streams
± Filter streams
± Object Serialization

Overview: Road Map
± Classes in Java

± What are classes?
± Defining classes
± .java files
± Packages and access level
± .jar files and classpath
± Fields, methods, and constructors

± Static fields and methods
± Defining and using static fields
± Defining and using static methods

± Commonly used classes in Java
± Object class
± String and String Buffer classes
± Class and System classes

3

How to Define Java Class?

public class Policy
{

…
}

Class	name	
(note	convention:	
start	with	a	capital	

letter	and	non-plural)

Class	
keyword

4

Class	access	level	/	
modifier

If	not	specified,	only	
classes	in	the	

package	can	access	it.

.java Files
±can	contain	one	public	class
±can	contain	more	than	one	non-public	
classes	(e.g.	Android	framework	adopts	this	
approach).

±Filename	is	the	same	as	the	public	class.

package org.tssg.demo.models;

public class Policy
{

…
}

Policy.java

5

Package

package org.tssg.pim;

Package	identifier

A	package	groups	
related	classes	e.g.	
testing,	utilities,	etc.

A	package	is	a	unique	
identifier	for	a	class;	two	
classes	in	a	package	
cannot	be	called	the	
same	name

6

Referencing Classes / Import Statement
package org.tssg.demo.tests;

public class PolicyTester
{

org.tssg.demo.models.Policy policy;
…
policy = new org.tssg.demo.models.Policy();

}

package org.tssg.demo.tests;
import org.tssg.models.Policy;

public class PolicyTester
{

Policy policy;
…
policy = new Policy();

} 7

Approach	1

Approach	2	
(preferred)

Some Java API packages…

8

Compiling Classes

9

Compiling Classes

Java	classes		- in	src
directory	- are	compiled	
into	the	same	folder	in	a	

bin	directory
10

Eclipse Package
Explorer View

Eclipse Navigator
View

Logical

Physical

Classpath and .jar files

CLASSPATH is	an	environment	
variable	that	specifies	the	location	
of	the	classes	and	packages	for	the	
JVM.

Compiled	Java	classes	can	be	
packaged	and	distributed	in	Java	
Archive	(.jar)	files.
(packages	become	directories	in	
the	file).

11

BuildPath in Eclipse

12

Project à Properties

What are Fields?

Policy
client
premium
policyNumber

Class	name

Fields:

• Object	state	for	
each instance.

• Defined	at	class	
level.

13

Defining Fields

package org.tssg.demo.models;

public class Policy
{

private Client client;
private String policyNumber;
private double premium;

}

Access	modifier
Field	type

Field	name

14

Initializing Fields Explicitly
package org.tssg.demo.models;

public class Policy
{

private Client client = new Client();
private String policyNumber = "PN123";
private double premium = 1200.00;
private double amountPaid;

}

Primitive	type	fields	get	a	
default	value:
• numerics =	0
• boolean =	false

15

Initializing Fields Explicitly
package org.tssg.demo.models;

public class Policy
{

private Client client = new Client();
private String policyNumber = "PN123";
private double premium = 1200.00;
private double amountPaid;

}

Primitive	type	fields	get	a	
default	value:
• numerics =	0
• boolean =	false

Unless	explicitly	
initialized,	reference	

type	fields	are	
initialized	to	null.

16

Constructors	are	often	used	to	
initialize	objects

Field Access Modifier

17

Methods

18

17

Methods

• When	a	message	is	sent	to	an	object,	the	method	that	
corresponds	to	that	message	is	executed	i.e.	
±Methods	represent	implementation	of	messages

• All	instances	of	
the	same	class	
have	same	
methods	defined

getters()/setters()

Policy
client
premium
policyNumber
getClient
getPremium
getPolicyNumber
setClient
setPremium
setPolicyNumber

private	access	
fields

getter	and	setter	
methods	allow	
access	to	private	
fields.

20

Defining Methods

package org.tssg.demo.models;

public class Policy
{

…
public void setClient(Client aClient)
{
…
}

}

Access	modifier Return	type Method	name Parameters

21

Constructors

Special	method	used	
for	creating	

instances	of	a	class.

Also	initializes	the	
instance	to	a	starting	

state

package org.tssg.demo.models;

public class Policy
{

…
public Policy()
{
setClient(new Client());
setPolicyNumber("PN123");
setPremium(1200.00);

}
}

Access	
modifier

Same	name	as	
the	class

No	return	
type

22

Constructors

package org.tssg.demo.models;

public class Policy
{

…
public Policy(Client aClient, String policyNumber, double
premium)
{

setClient(aClient);
setPolicyNumber(policyNumber);
setPremium(premium);

}
}

Policy policy = new Policy(new Client(), "PN123", 1200.00);

23

Policy Class: Sample Implementation
package org.tssg.demo.models;

public class Policy
{
private Client client;
private String policyNumber;
private double premium;

public Policy(Client aClient, String policyNumber, double premium)
{
setClient(aClient);
setPolicyNumber(policyNumber);
setPremium(premium);

}

public Client getClient()
{
return client;

}

public void setClient(Client aClient)
{
this.client = aClient;

}
//… other getters and setters..

} 24

Overview: Road Map
± Classes in Java

± What are classes?
± Defining classes
± .java files
± Packages and access level
± .jar files and classpath
± Fields, methods, and constructors

± Static fields and methods
± Defining and using static fields
± Defining and using static methods

± Commonly used classes in Java
± Object class
± String and String Buffer classes
± Class and System classes

25

What are Static Fields?
private static int gravity;

26

Declaring Static Fields

public class Count
{

public static String INFO = "Sample Count Class";
public final static int ONE = 1;
public final static int TWO = 2;
public final static int THREE = 3;

}

Static	field

Constant	
fields	i.e.	
final

27

Accessing Static Fields

System.out.println(Count.ONE);

Count count = new Count();
System.out.println(count.INFO);

1

Console

Sample Count Class

Console

public class Count
{

public static String INFO = "Sample Count Class";
public final static int ONE = 1;
public final static int TWO = 2;
public final static int THREE = 3;

}

Indirect	access

Direct	access

28

Static Methods

public class Count
{

private static String INFO = "Sample Count Class";
public final static int ONE = 1;
public final static int TWO = 2;
public final static int THREE = 3;

public static String getInfo()
{
return INFO;

}
}

Static	method	
for	behavior	
related	to	the	
class,	not	
instances.

Commonly	used	for	
accessing	static	fields.

29

Using Static Methods

Count count = new Count();
System.out.println(count.getInfo());

Sample Count Class
Console

System.out.println(Count.getInfo());
Sample Count Class

Console

Indirect	access

Direct	access

30

Overview: Road Map
± Classes in Java

± What are classes?
± Defining classes
± .java files
± Packages and access level
± .jar files and classpath
± Fields, methods, and constructors

± Static fields and methods
± Defining and using static fields
± Defining and using static methods

± Commonly used classes in Java
± Object class
± String and String Buffer classes
± Class and System classes

31

Special	class;	no	need	
to	import	it.

Class<T> Instances of the class Class represent classes and interfaces in a
running Java application.

Object Class Object is the root of the class hierarchy.
String The String class represents character strings.
StringBuilder A mutable sequence of characters.
System The System class contains several useful class fields and

methods.

32

31

Object Class

33

Object Class

34

Object Class: equals() method
public class Book {
...

@Override
public boolean equals(Object obj)
{

if (obj instanceof Book)
return ISBN.equals((Book)obj.getISBN());

else
return false;

}
}

Book firstBook = new Book("0201914670");
Book secondBook = new Book("0201914670");

if (firstBook.equals(secondBook))
{

System.out.println("objects are equal");
}
else
{

System.out.println("objects are not equal");
}

http://www.java-samples.com/showtutorial.php?tutorialid=660
35

Object Class: hashCode() method

@Override
public int hashCode()
{

return getPolicyNumber().hashCode();
}

Returns	an	int for	
indexing	;	must	be	

identical	for	objects	that	
are	equal

Used	by	collections,	
primarily	HashMap and	
HashSet

36

String Class

String greeting = "Hello" + ", do you like my hat?";
//"Hello, do you like my hat?"

String hello = greeting.substring(0,5); //"Hello"
String upercase = hello.toUpperCase(); //"HELLO THERE!"
boolean isEqual = hello.equals("HELLO"); //false
boolean isEqual1 = hello.equalsIgnoreCase("HELLO"); //true

Strings	are	
immutable

37

StringBuffer Class

StringBuffer buffer = new StringBuffer();
buffer.append("Hello");
buffer.append(", do you");
buffer.insert(13, " like my hat?");
System.out.println(buffer);
buffer.replace(0,5,"Hi");
System.out.println(buffer);
buffer.delete(2,buffer.length()-1);
buffer.replace(buffer.length()-1,

buffer.length(), "!");
System.out.println(buffer);

Hello, do you like my hat?

Console

Hi, do you like my hat?

Hi!

StringBuffer is	used	for	Strings	that	can	
change	e.g.	appending,	replacing,	
inserting	and	deleting	characters.

38

System Class

System.out.println("Hello, do you like my hat?");

Hello, do you like my hat?

Console

Provides	an	access	to	system	
functions	through	its	static	
protocols.

39

Covered in this lecture:
± Overview

± Introduction
± Syntax
± Basics
± Arrays

± Classes
± Classes Structure
± Static Members
± Commonly used

Classes
± Control Statements

± Control Statement
Types

± If, else, switch
± For, while, do-while

± Inheritance
± Class hierarchies
± Method lookup in

Java
± Use of this and super
± Constructors and

inheritance
± Abstract classes and

methods
Interfaces

± Collections
± ArrayList
± HashMap
± Iterator
± Vector
± Enumeration
± Hashtable

± Exceptions
± Exception types
± Exception Hierarchy
± Catching exceptions
± Throwing exceptions
± Defining exceptions
Common exceptions

and errors
± Streams

± Stream types
± Character streams
± Byte streams
± Filter streams
± Object Serialization

Except where otherwise noted, this content is
licensed under a Creative Commons
Attribution-NonCommercial 3.0 License.

For more information, please see
http://creativecommons.org/licenses/by-
nc/3.0/

