Software Paradigms

Produced Eamonn de Leastar (edeleastar@wit.ie)

by: Dr. Siobhan Drohan (sdrohan@wit.ie)

Waterford Institute of Technology Department of Computing and Mathematics

\a V5 INSTITIUID TEICNEOLAIOCHTA PHORT LAIRGE http://www.wit.ie/
— —f

Literate Programmer...

“Good design and programming is not
learned by generalities, but by seeing how
significant programs can be made clean,
easy to read, easy to maintain and modify,
human-engineered, efficient, and reliable,
by the application of good design and
programming practices. Careful study and
Imitation of good designs and programs
significantly improves development skills."

Kernighan & Plauger (1978)

THE

ELEMENTS
OF

PROGRAMMING
STYLE

SECOND EDITION

Kernighan and Plauger

Agenda

Software & Programming
Paradigms

Software Engineering
Knowledge Stack

Frameworks

Architectures

Components

Design Patterns

Data Structures

Programming
Languages

Software Paradigms...

» Paradigm™ is commonly used to refer HWILEY
to a category of entities that share a
common characteristic.

- Taken to mean a conceptual way of

describing something SOFTWARE
PARALDIGMS
* The rate of change in the software
discipline has seen proliferation of
Overlapping paradigms_ STEPHEN H. KAISLER

*from Greek paradeigma, ‘show side by side’,

4

Software Paradigms (examples..)

Imperative programming —
defines computation as statements that
change a program state.

Procedural programming, structured
programming — specifies the steps a
program must take to reach a desired
state.

Declarative programming — defines
program logic, but not detailed control
flow.

Functional programming - treats
programs as evaluating mathematical
functions and

avoids state and mutable data

- Object-oriented programming (OOP) -

organizes programs as objects: data
structures consisting

of datafields and methods together with
their interactions.

Event-driven programming —

program control flow is determined

by events, such as sensor inputs or user
actions (mouse clicks, key presses)

or messages from other programs

or threads.

Automata-based programming — a
program, or part, is treated as a model of
a finite state machine or any other formal
automaton.

Paradigm Structure

« Two aspects to a paradigm:

| Hi

1: Principles and techniques: STRUCTURE

Ol
« Symbolic generalizations: Assertions that are later taken SCIENTIFIC
REVOLUTIONS

for granted and employed without question

 Model beliefs: a commitment to a belief in a model to
which the relevant domain conforms

* Values

2. Exemplars: shared examples that illustrate the properties 3
of the paradigm. THOMAS 5. KUHN

(Kuhn, “The Structure of Scientific Revolutions”)

http://en.wikipedia.org/wiki/The Structure of Scientific Revolutions

KEEP

CALM

THERES A A fund tal h- in th
undamental change in the
PA R AD I G M basic concepts and exgerimental
tices of a scientific discipline.
SHIFT

GOING ON Can be a period qf confusion &
uncertainty

Software Paradigms

|
o
OO0BE0OO

o

[:

Each paradigm
Each language realizes consists of a set
one or more paradigms of concepts
Languages > Paradigms > Concepts

Roy, Peter van (2009)

Paradigms for This Module

* Object Oriented Programming
« OO Principles (particularly SOLID principles)

- Java Programming Language

¢ Kotlin Prog ramming Language D:j::o[il;ri\\leenrlll Except ions & Maven Pacen;:::;l.Oin SRP
- Agile Methods !
: <> Java
» Test Driven Development (TDD) tion:

- Automated Build / Configuration Management -

* Network Programming
- Web Services/HTTP/REST

Test Driven ocP Test Doubles LSP + Play

Knowledge
Context

J
=
—
©
S
-
O

Frameworks

A

A 4

Architectures

Components

b,

 J

Design Patterns

Data Structures

&

A 4

Programming
Languages

10

Programming Languages

» A programming language is a system of signs used to
communicate a task/algorithm to a computer, causing the
task to be performed.

- The task to be performed is called a computation, which
follows absolutely precise and unambiguous rules.

* Three components:

» The syntax of the language is a way of specifying what
is legal in the phrase structure of the language;

(analogous to knowing how to spell and form sentences
English)

* The second component is semantics, or meaning, of a
program in that language.

» Certain idioms that a programmer needs to know to use
the language effectively - are usually acquired through
practice and experience.

Frameworks

Architectures

Components
Design Patterns

Data Structures

Programming
Languages

11

1956 Fortran |
~
s Liw / |‘ \‘-
F | T 19%0 a - Mgol60 _ Cobol |
amily Tree : /AN,
v ayayaa \/
_ 1964 | | - pLA
- Imperative languages: & \
(Fortran, C, and Ada) enable s | Smalltalk ’\
programmers to express 19:7.) Pa" "'.. Prolog
. . P/
algorithms for solving i va | |
problems. T - ,- |
1976 ["‘ | | Fortran 77 ML\
. . 18 ckeR) | o \
- Declarative languages, (Lisp, e l / | | o/ l. il
Prolog, Haskell) allow the o "-\ G 4' /'“.’,3 o '.
. X o
programmer to specify what s c....,,f,.u., ';". l. \ | shiL
has to be computed, but not | A\, || e | cani
how the computation is done. | s ERANC I A A |
1dh0 | davay —Pyihon ‘l /| Fortran90 | Haskell
. . * \ :',.' | .‘. '..| I
« Object Oriented: can be 102 " \ ‘..\W‘ v
viewed as a hybrid - of 194 | e
: v am
declarative (class structures) & :g I s |
imperative (methods) features. | 1 YA
2000 Of Python 2.0
20‘02 \

'
2004 Java 2 (vi.5 beta) C# 2.0 (beta)

. WEB DEVELOPMENT
0020080
- SCRIPT

. GAME DEVELOPMENT

MOBILE APP DEVELOPMENT

. DATA ANALYSIS

082

EMBEDDED SYSTEM PROGRAMMING

=

2015 Rank

0 O ~N O O A W N -

e S S Sy
L O ~N O O s W N - O

Python

Java

C++

Cit

C
JavaScript
Ruby

PHP
Haskell
Go

Scala

Perl
Objective-C
Bash

R

Visual Basic,NET

Lua
Clojure

Tcl

2015 Change%

26.67%
22.58%
9.96%
9.39%
7.37%
6.88%
5.88%
3.82%
1.77%
1.27%
1.04%
0.95%
0.82%
0.46%
0.37%
0.37%
0.19%
0.14%
0.06%

-14.64%
15.37%
1.76%
27.37%
21.37%
6.09%
-17.27%
5.45%
17.24%
-44 00%
-17.80%
-37.33%
-17.62%
7.21%
165.71%
825.50%
-44 51%
-8.53%
-8.57%

2014 Change%

31.24%
19.57%
9.79%
7.37%
6.07%
6.48%
711%
3.62%
1.51%
2.26%
1.27%
1.52%
1.00%
0.43%
0.14%
0.04%
0.35%
0.15%
0.07%

3.10%
-11.85%
-24.70%

47.37%
48.14%
24 66%
-32.90%
9.84%
25.83%
50.67%
27.00%
-6.17%
265.76%
290.91%
-30.00%

337.50%
-48.28%
133.33%

2013 Change%

30.30%
22.20%
13.00%
5.00%
4.10%
5.20%
10.60%
3.30%
1.20%
1.50%
1.00%
1.62%
0.27%
0.11%
0.20%

0.08%
0.29%
0.03%

5.21%
-13.95%
3.17%
100.00%
-16.33%
33.33%
10.42%
-54.79%

-25.00%
66.67%

173.40%

-63.75%
50.00%

http://blog.codeeval.com/codeevalblog/2016/2/2/most-popular-coding-languages-of-2016

-

-

o

Google Search Volume

o

Google Search Volume

%) o
.

.
-
-
-

LJ
-

%) o
.

LR -

JAVA

SCRIPT

https://blog.udacity.com/2015/05/pick-your-first-programming-language.html

- Typical Data Structures:

- Lists, Maps, Stacks, Queues, Trees, etc.

Data Structures &

Problems

- Static and Dynamic implementations

- Typical Problem Categories:

Search

Sorting

Traversal

Inserting / Deleting
Merging

Clustering

Classification

Frameworks

Architectures

Components

Design Patterns

4

¥

Data Structures

Programming

Languages
16

public class Contact

{

¥

private String name;

public Contact(String name)
{

this.name = name;

h

public String toString()
i

return name;

h

—xploring a Data Structure

public class Main

{
public static void main(String[] args)

{

List<Contact> contacts
= new ArraylList<Contact>();

contacts.add(new Contact("Mike"));
contacts.add(new Contact("Mary"));
contacts.add(new Contact("Jim"));

System.out.println(contacts);

()= Variables 52 ©g Breakpoints ==

Name

O args String[0] (id=16)
4 O contacts ArrayList<E> (id=19)

a a [0] Contact (id=31)
. @ name "Mike" (id=34)

a a [1] Contact (id=33)
. @ name "Mary" (id=37)

4 a [2] Contact (id=38)

. ® name "Jim" (id=39)

Value

17

Design Patterns

» A design pattern is a proven solution for a general design
problem.

» It consists of communicating ‘objects’ that are customised
to solve the problem in a particular context.

» Patterns have their origin in object-oriented programming;
they are pre-packaged Object-oriented design knowledge
that allows you to create more flexible and maintainable
code.

» There isn't any fundamental relationship between patterns
and objects; it just happens they began there.

- Patterns may have arisen because objects seem so
elemental, but the problems we were trying to solve with
them were so complex.

Frameworks

Architectures

Components

Design Patterns

Data Structures

Programming
Languages

18

Why the need for Design Patterns?

- Change is a constant in software design e.g. bugs, new
features, changes to design, new regulations, etc. All
software changes, so your designs should be ready for it.

* They allow you to typically anticipate common ways that
systems grow and change over time.

» The primary goal of any design pattern is to help you
structure your code so it is flexible and resilient.

» All patterns let some part of the code vary independently of
the other parts.

Pattern Levels

Architectural Patterns:

- Expresses a fundamental structural organization or schema for software
systems. It provides a set of predefined subsystems, specifies their
responsibilities, and includes rules and guidelines for organizing the
relationships between them.

Design Patterns:

* Provides a scheme for refining the subsystems or components of a
software system, or the relationships between them. It describes
commonly recurring structure of communicating components that solves a
general design problem within a particular context.

ldioms:

+ A low-level pattern specific to a programming language. An idiom
describes how to implement particular aspects of components or the
relationships between them using the features of the given language.

20

Architectural

Patterns Examples

Messaging Patterns

Service Patterns

Presentation Patterns

Domain Patterns

‘ > Object-Relational patterns

’ ‘J'br?" Maintain Data Copies pattern }-___

7

Domain Patterns

-

AP Message Bus pattern |

> Publish Subscribe pattern)

\
\\ \
.\‘ \\
S N\
. - N
‘ > Asynchronous Queue Processing pattern \ \ \\
\ J \\ \ \
\ \‘\ \
\
, . S |
- % \
‘ 2 Synchronous Point to Point Processing pattem | \ M
R b \\\ \\ \
. \ \\‘ \
P ~ \\\ \.\ \‘\ \‘\
‘ P> Message Router pattern R
I) ~ e < _\ 2. \,\ ‘\\\
i B b \\
| J> Message Dispatcher pattern }—(Messaging Patterns
- - // "/"//
S P /////
',_ X X \/// Vs /‘/‘/
‘ > Pipes and Filters pattemn | SOl AT
= Ay,
// - // ‘// /
. N // AL
’ P> Message Translator pattern /
L J 7 // /
/ /)
/ / /
/ /
./ /
—— / /‘/ /
[File Transfer pattern ~ / /
U /
L J / /
// /

> Document Message / Transfer Object pattern /

' P Command Query Responsibility Segregation (CQRS) pattern |

’ P“’ Shared Database pattern }——--""’

\

> Transaction Script Pattern

Note: this area is covered in detail in the Design Patterns Module.

Singleton Pattern

public class FilelLogger{
private static FilelLogger logger;

private FilelLogger(){
h

public static FilelLogger getLogger(){
1f (logger == null){
logger = new FilelLogger();
}

return logger;

¥

public boolean log(String msg){

try{
PrintWriter writer = new PrintWriter(new FileWriter("log.txt", true));
writer.println(msg);
writer.close();

ks

catch (FileNotFoundException ex){
return (false);

ks

catch (IO0Exception ex){
return (false);

}

return (true);

22

Design Patterns Examples

https://dzone.com/refcardz

Creational Patterns: Used to construct objects such that
they can be decoupled from their implementing system.

Structural Patterns: Used to form large object structures
between many disparate objects.

Behavioral Patterns: Used to manage algorithms,

relationships, and responsibilities between objects.

Object Scope: Deals with object relationships that can be
changed at runtime.

Class Scope: Deals with class relationships that can be changed
at compile time.

€ Abstract Factory S Decorator € Prototype

S Adapter S Facade S Proxy

S Bridge € Factory Method B Observer

€ Builder S Flyweight € Singleton

B Chain of B Interpreter B State
Responsibility B |terator B Strategy

B Command B Mediator B Template Method

S Composite B Memento B Visitor

Note: this area is
covered in detail in the
Design Patterns Module.

Components

« Software components are binary units of:
 independent production,
 acquisition,

» deployment

- that interact to form a functioning program.
(Szyperski, 1998)

- Emphasis on reusable units.

« A component must be compatible and interoperate
with a whole range of other components.

- Two main issues arise with respect to interoperability
information:

- How to express interoperability information
« How to publish this information

Frameworks

Architectures

Components

Design Patterns

Data Structures

Programming
Languages

24

—xploring a Component (xstream-1-4-3.jar)

4 =5 02_ComponentExample
a [src
4 £ pim.log
. |J] FileLogger.java
4 1 pim.model
. |J] Contact.java
. |J] Main.java
. B JRE System Library [JavaSE-1.7]
4 =), Referenced Libraries
. [ug xstream-1.4.3.jar
4 (= lib
5| xstream-1.4.3.jar

<object-stream>
<list>
<pim.model.Contact>
<name>Mike</name>
</pim.model.Contact>
<pim.model.Contact>
<name>Mary</name>
</pim.model.Contact>
<pim.model.Contact>
<name>Jim</name>
</pim.model.Contact>
</list>
</object-stream>

public class Main{
public static void main(String[] args) throws IOException{
FileLogger logger = FilelLogger.getlLogger();

logger.log("Creating contact list");

List<Contact> contacts = new ArraylList<Contact>();
logger.log("Adding contacts");

contacts.add(new Contact("Mike"));
contacts.add(new Contact("Mary"));
contacts.add(new Contact("Jim"));
System.out.println(contacts);

logger.log("Serializing contacts to XML");

XStream xstream = new XStream(new DomDriver());

ObjectOutputStream out =
xstream.createObjectOutputStream
(new FileWriter("contacts.xml"));

out.writeObject(contacts);

out.close();

logger.log("Finished - shutting down");

25

More Component Definitions

« "A component is a nontrivial, nearly independent, and replaceable part of a
system that fulfills a clear function in the context of a well-defined
architecture. A component conforms to and provides the physical realization
of a set of interfaces.” (Philippe Krutchen, Rational Software)

- "A runtime software component is a dynamically bindable package of one or
more programs managed as a unit and accessed through documented
interfaces that can be discovered at runtime." (Gartner Group)

- "A component is a physical and replaceable part of a system that conforms
to and provides the realization of a set of interfaces...typically represents the
physical packaging of otherwise logical elements, such as classes, interfaces,
and collaborations." (Grady Booch, Jim Rumbaugh, lvar Jacobson, The UML
User Guide, p. 343)

26

Architecture

- The software architecture of a program or computing
system is:

- the structure or structures of the system, which
comprise software components,

- the externally visible properties of those components,
and

* the a set of rules that govern relationships among
them.

« An architectural style is a family of software architectures,
defining types of components and types of connections,
and rules describing how to combine them.

- A software architecture is an instantiation of an
architectural style for a certain system. The components

and connections may be decomposed into architectures
themselves.

Frameworks

Architectures

Components

Design Patterns

Data Structures

Programming
Languages

27

Architecture Example: Layered

1

allowed to use
\ J

Application Application
Components Services

1

allowed to use
\ 4

Domain Domain
Components Services

allowcd to use
A 4

Data Access Infrastructure
Components Services

Business External
Business g System
Actors Service
Consumers
A
Presentation layer ©
User
Interaction
Components

Application layer ©

Domain layer ()]

Infrastructure layer ©

Common

Shared
Enterprise
Components

Technical
Components

Source: Pierre Peclier,
Design Patterns Module

Architecture Example: Ports and Adaptors

Application ()]

Application
Inbound -O Inbound Adapters ﬂ Domain API Outbound ﬂ Outbound -QO
ports R S R Adapters e R ports
Marshalling / () | —> FAN « Marshalling /Q
Un- I'l om Un-
1
Inbound protocol / e Cl:)pr:p::ents g e Outbound protocol /
comm. mechanism comm. mechanism
eq. e.qg
«- HTTP (browser, €9 Domain Q €9 « HTTP (browser,
REST. SOAP) - Function call / Model - RDBMS adapter REST. SOAP)
- JMS dependency injection - ORM adapter - JMS
() adapter - NoSQL adapter ()
- Publish/suscribe event - Message adapter ’
adapter - Event notification
- Web Service adapter adapter

{...) (...)

Source: Pierre Peclier,
Design Patterns Module

Architecture Example: Service Oriented

Service Orchestrator
Business Process Management /
Business Activity Monitoring
Composed services - Process
Services. ¢ g a macro Business o
Processes
workflow, state remains stable
over multiple service
invocations
I
[
1
|
Senvices
Senice
Contracts
Enterprise
Services
-
Application Senrvice Enterprise Infrastructure
Services Registry Service Bus Services
)
Modern Applications @@ Protocel transformation
Note that Web Services is not
licat a synonym for SOA; Web
| — CA” - ':: Services are one possible way
e e of realzing the infrastructure
aspects of SOA
Legacy Applications
CICS, IMS ERP Chent Legacy BI
Server Platforms
Legacy

SOA is an architectural
paradigm for dealing with
business processes
distributed over a large and
heterogeneous landscape of
existing and new systems that
are under the control of
different owners

The key concepts of SOA are
services, interoperability, and
loose coupling. The key
ingredients of SOA are the
infrastructure (ESB)
architecture. and processes

Source: Pierre Peclier,
Design Patterns Module

Frameworks

« A framework is a set of related components
which you:

- Specialize
- Integrate and/or
* Instantiate
» to Implement an application or subsystem.

A framework is usually a semi complete
application containing dynamic and static
components that can be customized to
produce applications.

Frameworks

Architectures

Components

Design Patterns

Data Structures

Programming
Languages

31

Frameworks

» Frameworks are targeted for a particular
application domain & consists of a set of classes
(abstract & concrete), whose instances:

« collaborate

 are intended to be extended, i.e. reused
(abstract design)

- do not have to address a complete application
domain (allowing for composition of
frameworks)

- Emphasize stable parts of the domain and their
relationships and interactions.

Frameworks

Architectures

Components
Design Patterns

Data Structures

Programming
Languages

32

Framework Structure

P

— QO 3 =~ DO ~ X [T

~350 ——0

\

Framework

Framework Extension

33

Framework

Download

Documentation Get Involved

vr};}> spacebook-p2 [spacebook-p2 master]
v (Bapp
> f} (default package)
> i controllers
> £} models
> 3 views
> 3 views.nav
v (Htest
¥ {#} (default package)
» [J} ApplicationTest.java
P [J} FriendsTest.java
» [J} IntegrationTest.java
» [J} MessagesTest.java
> [J} UsersTest.java
b =\ Referenced Libraries
> = JRE System Library [Java SE 7 [1.7.0_21]]
» (=% > conf
» (= logs
> (3 > project
> (7 public
b (= target
) README

The High Velocity
Web Framework
For Java and Scala

- -
Introduction to Play Framework for Java developers

GET THE LATEST PACKAGE

Download 2.1.4

or browse all versions

GETTING STARTED WITH

Java & Scala

or read full documentation

Play Framework makes it easy to build
web applications with Java & Scala.

Play is based on a lightweight, stateless, web-friendly architecture.

Built on Akka, Play provides predictable and minimal resource consumption
(CPU, memory, threads) for highly-scalable applications.

Agile Software Development Module

« Assumptions:

« General Programming Ability (not necessarily java)
* Focus for this course:

» SOLID Principles within OO Programming

 Test Driven Software Development in Java

- Effective Build Processes

* Network Programming

- Beyond Java (Kotlin)

35

