
Software Paradigms

Produced
by:

Department of Computing and Mathematics
http://www.wit.ie/

Eamonn de Leastar (edeleastar@wit.ie)

Dr. Siobhan Drohan (sdrohan@wit.ie)

Literate Programmer…

“Good design and programming is not
learned by generalities, but by seeing how
significant programs can be made clean,
easy to read, easy to maintain and modify,
human-engineered, efficient, and reliable,
by the application of good design and
programming practices. Careful study and
imitation of good designs and programs
significantly improves development skills."

Kernighan & Plauger (1978)

2

Agenda

Software & Programming
Paradigms

Software Engineering
Knowledge Stack

Software Paradigms…

• Paradigm* is commonly used to refer
to a category of entities that share a
common characteristic.

• Taken to mean a conceptual way of
describing something

• The rate of change in the software
discipline has seen proliferation of
overlapping paradigms.

4

*from Greek paradeigma, ‘show side by side’,

Software Paradigms (examples..)

• Imperative programming –
defines computation as statements that
change a program state.

• Procedural programming, structured
programming – specifies the steps a
program must take to reach a desired
state.

• Declarative programming – defines
program logic, but not detailed control
flow.

• Functional programming – treats
programs as evaluating mathematical
functions and
avoids state and mutable data

• Object-oriented programming (OOP) –
organizes programs as objects: data
structures consisting
of datafields and methods together with
their interactions.

• Event-driven programming –
program control flow is determined
by events, such as sensor inputs or user
actions (mouse clicks, key presses)
or messages from other programs
or threads.

• Automata-based programming – a
program, or part, is treated as a model of
a finite state machine or any other formal
automaton.

Software Paradigms

• "Paradigm" (example in Greek) is commonly used to
refer to a category of entities that share a common
characteristic.

• Taken to mean a conceptual way of describing
something

• The rate of change in the software discipline has seen
numerous paradigms.

6

Paradigm Structure

• Two aspects to a paradigm:

1: Principles and techniques:

• Symbolic generalizations: Assertions that are later taken

for granted and employed without question

• Model beliefs: a commitment to a belief in a model to

which the relevant domain conforms

• Values

2: Exemplars: shared examples that illustrate the properties
of the paradigm.

(Kuhn, “The Structure of Scientific Revolutions”)

�X
http://en.wikipedia.org/wiki/The_Structure_of_Scientific_Revolutions

A fundamental change in the
basic concepts and experimental
practices of a scientific discipline.

Can be a period of confusion &
uncertainty

Software Paradigms

Roy, Peter van (2009)

Paradigms for This Module

• Object Oriented Programming
• OO Principles (particularly SOLID principles)
• Java Programming Language

• Kotlin Programming Language

• Agile Methods
• Test Driven Development (TDD)
• Automated Build / Configuration Management

• Network Programming
• Web Services/HTTP/REST

9

Knowledge
Context

10

Programming Languages
• A programming language is a system of signs used to

communicate a task/algorithm to a computer, causing the
task to be performed.

• The task to be performed is called a computation, which
follows absolutely precise and unambiguous rules.

• Three components:

• The syntax of the language is a way of specifying what
is legal in the phrase structure of the language;
(analogous to knowing how to spell and form sentences
English)

• The second component is semantics, or meaning, of a
program in that language.

• Certain idioms that a programmer needs to know to use
the language effectively - are usually acquired through
practice and experience.

11

Family Tree
• Imperative languages:

(Fortran, C, and Ada) enable
programmers to express
algorithms for solving
problems.

• Declarative languages, (Lisp,
Prolog, Haskell) allow the
programmer to specify what
has to be computed, but not
how the computation is done.

• Object Oriented: can be
viewed as a hybrid – of
declarative (class structures) &
imperative (methods) features.

12

http://blog.codeeval.com/codeevalblog/2016/2/2/most-popular-coding-languages-of-2016

https://blog.udacity.com/2015/05/pick-your-first-programming-language.html

Data Structures & Problems
• Typical Data Structures:

• Lists, Maps, Stacks, Queues, Trees, etc.

• Static and Dynamic implementations

• Typical Problem Categories:

• Search

• Sorting

• Traversal

• Inserting / Deleting

• Merging

• Clustering

• Classification
16

Exploring a Data Structure

17

public class Contact
{
private String name;

public Contact(String name)
{
this.name = name;

}

public String toString()
{
return name;

}
}

public class Main
{
public static void main(String[] args)
{
List<Contact> contacts

= new ArrayList<Contact>();

contacts.add(new Contact("Mike"));
contacts.add(new Contact("Mary"));
contacts.add(new Contact("Jim"));

System.out.println(contacts);
}

}

Design Patterns
• A design pattern is a proven solution for a general design

problem.

• It consists of communicating ‘objects’ that are customised
to solve the problem in a particular context.

• Patterns have their origin in object-oriented programming;
they are pre-packaged Object-oriented design knowledge
that allows you to create more flexible and maintainable
code.

• There isn't any fundamental relationship between patterns
and objects; it just happens they began there.

• Patterns may have arisen because objects seem so
elemental, but the problems we were trying to solve with
them were so complex.

18

Why the need for Design Patterns?

• Change is a constant in software design e.g. bugs, new
features, changes to design, new regulations, etc. All
software changes, so your designs should be ready for it.

• They allow you to typically anticipate common ways that
systems grow and change over time.

• The primary goal of any design pattern is to help you
structure your code so it is flexible and resilient.

• All patterns let some part of the code vary independently of
the other parts.

Pattern Levels

Architectural Patterns:
• Expresses a fundamental structural organization or schema for software

systems. It provides a set of predefined subsystems, specifies their
responsibilities, and includes rules and guidelines for organizing the
relationships between them.

Design Patterns:
• Provides a scheme for refining the subsystems or components of a

software system, or the relationships between them. It describes
commonly recurring structure of communicating components that solves a
general design problem within a particular context.

Idioms:
• A low-level pattern specific to a programming language. An idiom

describes how to implement particular aspects of components or the
relationships between them using the features of the given language.

20

Architectural Patterns Examples

Note: this area is covered in detail in the Design Patterns Module.

22

public class FileLogger{

private static FileLogger logger;

private FileLogger(){
}

public static FileLogger getLogger(){
if (logger == null){
logger = new FileLogger();

}
return logger;

}

public boolean log(String msg){
try{
PrintWriter writer = new PrintWriter(new FileWriter("log.txt", true));
writer.println(msg);
writer.close();

}
catch (FileNotFoundException ex){
return (false);

}
catch (IOException ex){
return (false);

}
return (true);

}
}

Singleton Pattern

Design Patterns Examples

Note: this area is
covered in detail in the
Design Patterns Module.

https://dzone.com/refcardz

Components
• Software components are binary units of:

• independent production,
• acquisition,
• deployment

• that interact to form a functioning program.
(Szyperski, 1998)

• Emphasis on reusable units.
• A component must be compatible and interoperate

with a whole range of other components.
• Two main issues arise with respect to interoperability

information:
• How to express interoperability information
• How to publish this information

24

Exploring a Component (xstream-1-4-3.jar)

25

public class Main{
public static void main(String[] args) throws IOException{
FileLogger logger = FileLogger.getLogger();

logger.log("Creating contact list");

List<Contact> contacts = new ArrayList<Contact>();
logger.log("Adding contacts");
contacts.add(new Contact("Mike"));
contacts.add(new Contact("Mary"));
contacts.add(new Contact("Jim"));
System.out.println(contacts);

logger.log("Serializing contacts to XML");
XStream xstream = new XStream(new DomDriver());
ObjectOutputStream out =

xstream.createObjectOutputStream
(new FileWriter("contacts.xml"));

out.writeObject(contacts);
out.close();

logger.log("Finished - shutting down");
}

}

<object-stream>
<list>
<pim.model.Contact>
<name>Mike</name>

</pim.model.Contact>
<pim.model.Contact>
<name>Mary</name>

</pim.model.Contact>
<pim.model.Contact>
<name>Jim</name>

</pim.model.Contact>
</list>

</object-stream>

More Component Definitions

• "A component is a nontrivial, nearly independent, and replaceable part of a
system that fulfills a clear function in the context of a well-defined
architecture. A component conforms to and provides the physical realization
of a set of interfaces." (Philippe Krutchen, Rational Software)

• "A runtime software component is a dynamically bindable package of one or
more programs managed as a unit and accessed through documented
interfaces that can be discovered at runtime." (Gartner Group)

• "A component is a physical and replaceable part of a system that conforms
to and provides the realization of a set of interfaces...typically represents the
physical packaging of otherwise logical elements, such as classes, interfaces,
and collaborations." (Grady Booch, Jim Rumbaugh, Ivar Jacobson, The UML
User Guide, p. 343)

26

Architecture
• The software architecture of a program or computing

system is:
• the structure or structures of the system, which

comprise software components,
• the externally visible properties of those components,

and
• the a set of rules that govern relationships among

them.
• An architectural style is a family of software architectures,

defining types of components and types of connections,
and rules describing how to combine them.

• A software architecture is an instantiation of an
architectural style for a certain system. The components
and connections may be decomposed into architectures
themselves.

27

Architecture Example: Layered

Source: Pierre Peclier,
Design Patterns Module

Architecture Example: Ports and Adaptors

Source: Pierre Peclier,
Design Patterns Module

Architecture Example: Service Oriented

Source: Pierre Peclier,
Design Patterns Module

Frameworks

• A framework is a set of related components
which you:
• Specialize
• Integrate and/or
• Instantiate

• to implement an application or subsystem.

• A framework is usually a semi complete
application containing dynamic and static
components that can be customized to
produce applications.

31

Frameworks

• Frameworks are targeted for a particular
application domain & consists of a set of classes
(abstract & concrete), whose instances:
• collaborate
• are intended to be extended, i.e. reused

(abstract design)
• do not have to address a complete application

domain (allowing for composition of
frameworks)

• Emphasize stable parts of the domain and their
relationships and interactions.

32

Framework Structure

33

Framework Example

34

Agile Software Development Module

• Assumptions:

• General Programming Ability (not necessarily java)

• Focus for this course:

• SOLID Principles within OO Programming

• Test Driven Software Development in Java

• Effective Build Processes

• Network Programming

• Beyond Java (Kotlin)

35

