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Literate Programmer…

“Good design and programming is not 
learned by generalities, but by seeing how 
significant programs can be made clean, 
easy to read, easy to maintain and modify, 
human-engineered, efficient, and reliable, 
by the application of good design and 
programming practices. Careful study and 
imitation of good designs and programs 
significantly improves development skills."

Kernighan & Plauger (1978)
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Software Paradigms…

• Paradigm* is commonly used to refer 
to a category of entities that share a 
common characteristic.

• Taken to mean a conceptual way of 
describing something

• The rate of change in the software 
discipline has seen proliferation of 
overlapping paradigms.
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*from Greek paradeigma, ‘show side by side’,



Software Paradigms (examples..)

• Imperative programming –
defines computation as statements that 
change a program state.

• Procedural programming, structured 
programming – specifies the steps a 
program must take to reach a desired 
state.

• Declarative programming – defines 
program logic, but not detailed control 
flow.

• Functional programming – treats 
programs as evaluating mathematical 
functions and 
avoids state and mutable data

• Object-oriented programming (OOP) –
organizes programs as objects: data 
structures consisting 
of datafields and methods together with 
their interactions.

• Event-driven programming –
program control flow is determined 
by events, such as sensor inputs or user 
actions (mouse clicks, key presses) 
or messages from other programs 
or threads.

• Automata-based programming – a 
program, or part, is treated as a model of 
a finite state machine or any other formal 
automaton.



Software Paradigms

• "Paradigm" (example in Greek) is commonly used to 
refer to a category of entities that share a common 
characteristic.

• Taken to mean a conceptual way of describing 
something

• The rate of change in the software discipline has seen 
numerous paradigms.

6

Paradigm Structure

• Two aspects to a paradigm:

1: Principles and techniques: 

• Symbolic generalizations: Assertions that are later taken 

for granted and employed without question

• Model beliefs: a commitment to a belief in a model to 

which the relevant domain conforms

• Values


2: Exemplars: shared examples that illustrate the properties 
of the paradigm.


(Kuhn, “The Structure of Scientific Revolutions”)

�X
http://en.wikipedia.org/wiki/The_Structure_of_Scientific_Revolutions



A fundamental change in the 
basic concepts and experimental
practices of a scientific discipline.

Can be a period of confusion & 
uncertainty



Software Paradigms

Roy, Peter van (2009)



Paradigms for This Module

• Object Oriented Programming
• OO Principles (particularly SOLID principles)
• Java Programming Language

• Kotlin Programming Language

• Agile Methods
• Test Driven Development (TDD)
• Automated Build / Configuration Management

• Network Programming
• Web Services/HTTP/REST
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Knowledge
Context
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Programming Languages
• A programming language is a system of signs used to 

communicate a task/algorithm to a computer, causing the 
task to be performed.

• The task to be performed is called a computation, which 
follows absolutely precise and unambiguous rules.

• Three components:

• The syntax of the language is a way of specifying what 
is legal in the phrase structure of the language; 
(analogous to knowing how to spell and form sentences 
English)

• The second component is semantics, or meaning, of a 
program in that language. 

• Certain idioms that a programmer needs to know to use 
the language effectively - are usually acquired through 
practice and experience.
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Family Tree
• Imperative languages: 

(Fortran, C, and Ada) enable 
programmers to express 
algorithms for solving 
problems.

• Declarative languages, (Lisp, 
Prolog, Haskell) allow the 
programmer to specify what 
has to be computed, but not 
how the computation is done.

• Object Oriented: can be 
viewed as a hybrid – of 
declarative (class structures) & 
imperative (methods) features.
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http://blog.codeeval.com/codeevalblog/2016/2/2/most-popular-coding-languages-of-2016



https://blog.udacity.com/2015/05/pick-your-first-programming-language.html



Data Structures & Problems
• Typical Data Structures:

• Lists, Maps, Stacks, Queues, Trees, etc.

• Static and Dynamic implementations

• Typical Problem Categories:

• Search

• Sorting

• Traversal

• Inserting / Deleting

• Merging

• Clustering

• Classification
16



Exploring a Data Structure 
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public class Contact
{
private String name;

public Contact(String name)
{
this.name = name;

}

public String toString()
{
return name;

}
}

public class Main
{
public static void main(String[] args)
{
List<Contact> contacts 

= new ArrayList<Contact>();

contacts.add(new Contact("Mike"));
contacts.add(new Contact("Mary"));
contacts.add(new Contact("Jim"));

System.out.println(contacts);
}

}



Design Patterns
• A design pattern is a proven solution for a general design 

problem. 

• It consists of communicating ‘objects’ that are customised 
to solve the problem in a particular context.

• Patterns have their origin in object-oriented programming; 
they are pre-packaged Object-oriented design knowledge 
that allows you to create more flexible and maintainable 
code.  

• There isn't any fundamental relationship between patterns 
and objects; it just happens they began there.

• Patterns may have arisen because objects seem so 
elemental, but the problems we were trying to solve with 
them were so complex. 
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Why the need for Design Patterns?

• Change is a constant in software design e.g. bugs, new 
features, changes to design, new regulations, etc.  All 
software changes, so your designs should be ready for it.

• They allow you to typically anticipate common ways that 
systems grow and change over time.

• The primary goal of any design pattern is to help you 
structure your code so it is flexible and resilient.

• All patterns let some part of the code vary independently of 
the other parts.



Pattern Levels

Architectural Patterns: 
• Expresses a fundamental structural organization or schema for software 

systems. It provides a set of predefined subsystems, specifies their 
responsibilities, and includes rules and guidelines for organizing the 
relationships between them. 

Design Patterns: 
• Provides a scheme for refining the subsystems or components of a 

software system, or the relationships between them. It describes 
commonly recurring structure of communicating components that solves a 
general design problem within a particular context. 

Idioms: 
• A low-level pattern specific to a programming language. An idiom 

describes how to implement particular aspects of components or the 
relationships between them using the features of the given language.
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Architectural Patterns Examples

Note:  this area is covered in detail in the Design Patterns Module.
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public class FileLogger{

private static FileLogger logger;

private FileLogger(){
}

public static FileLogger getLogger(){
if (logger == null){
logger = new FileLogger();

}
return logger;

}

public boolean log(String msg){
try{
PrintWriter writer = new PrintWriter(new FileWriter("log.txt", true));
writer.println(msg);
writer.close();

}
catch (FileNotFoundException ex){
return (false);

}
catch (IOException ex){
return (false);

}
return (true);

}
}

Singleton Pattern



Design Patterns Examples

Note:  this area is 
covered in detail in the 
Design Patterns Module.

https://dzone.com/refcardz



Components
• Software components are binary units of:

• independent production, 
• acquisition, 
• deployment 

• that interact to form a  functioning program. 
(Szyperski, 1998)

• Emphasis on reusable units.
• A component must be compatible and interoperate 

with a whole range of other components.
• Two main issues arise with respect to interoperability 

information: 
• How to express interoperability information
• How to publish this information
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Exploring a Component (xstream-1-4-3.jar)
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public class Main{
public static void main(String[] args) throws IOException{
FileLogger logger = FileLogger.getLogger();

logger.log("Creating contact list");

List<Contact> contacts = new ArrayList<Contact>();
logger.log("Adding contacts");
contacts.add(new Contact("Mike"));
contacts.add(new Contact("Mary"));
contacts.add(new Contact("Jim"));
System.out.println(contacts);

logger.log("Serializing contacts to XML");
XStream xstream = new XStream(new DomDriver());
ObjectOutputStream out = 

xstream.createObjectOutputStream
(new FileWriter("contacts.xml"));

out.writeObject(contacts);
out.close();

logger.log("Finished - shutting down");
}

}

<object-stream>
<list>
<pim.model.Contact>
<name>Mike</name>

</pim.model.Contact>
<pim.model.Contact>
<name>Mary</name>

</pim.model.Contact>
<pim.model.Contact>
<name>Jim</name>

</pim.model.Contact>
</list>

</object-stream>



More Component Definitions

• "A component is a nontrivial, nearly independent, and replaceable part of a 
system that fulfills a clear function in the context of a well-defined 
architecture. A component conforms to and provides the physical realization 
of a set of interfaces." (Philippe Krutchen, Rational Software)

• "A runtime software component is a dynamically bindable package of one or 
more programs managed as a unit and accessed through documented 
interfaces that can be discovered at runtime." (Gartner Group)

• "A component is a physical and replaceable part of a system that conforms 
to and provides the realization of a set of interfaces...typically represents the 
physical packaging of otherwise logical elements, such as classes, interfaces, 
and collaborations." (Grady Booch, Jim Rumbaugh, Ivar Jacobson, The UML 
User Guide, p. 343)
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Architecture
• The software architecture of a program or computing 

system is: 
• the structure or structures of the system, which 

comprise software components,
• the externally visible properties of those components, 

and
• the a set of rules that govern relationships among 

them.
• An architectural style is a family of software architectures, 

defining types of components and types of connections, 
and rules describing how to combine them. 

• A software architecture is an instantiation of an 
architectural style for a certain system. The components 
and connections may be decomposed into architectures 
themselves.
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Architecture Example: Layered 

Source: Pierre Peclier, 
Design Patterns Module 



Architecture Example: Ports and Adaptors 

Source: Pierre Peclier, 
Design Patterns Module 



Architecture Example: Service Oriented 

Source: Pierre Peclier, 
Design Patterns Module 



Frameworks

• A framework is a set of related components 
which you:
• Specialize
• Integrate and/or 
• Instantiate

• to implement an application or subsystem.

• A framework is usually a semi complete 
application containing dynamic and static 
components that can be customized to 
produce applications.
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Frameworks

• Frameworks are targeted for a particular 
application domain & consists of a set of classes 
(abstract & concrete), whose instances:
• collaborate
• are intended to be extended, i.e. reused 

(abstract design) 
• do not have to address a complete application 

domain (allowing for composition of 
frameworks)

• Emphasize stable parts of the domain and their 
relationships and interactions.

32



Framework Structure
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Framework Example 
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Agile Software Development Module

• Assumptions: 

• General Programming Ability (not necessarily java)

• Focus for this course:

• SOLID Principles within OO Programming

• Test Driven Software Development in Java

• Effective Build Processes

• Network Programming

• Beyond Java (Kotlin)
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