
Arrays Basics

const firstPrime = 2;  
const secondPrime = 3;  
const thirdPrime = 5;  
const fourthPrime = 7;  
const fifthPrime = 11;

Variable are fine
if you know how
many primes you

need at the
outset

But what if you
didn't know how
many values you
needed to store

Introduction

const primes = [2, 3, 5, 7, 11]; 
const names = ['Alice', 'Bob', 'Charlie'];  
const booleans = [true, false, false, true]; 
const mixedTypes = [1, 'sweet', true, null, NaN, 'bye!'];  
const woahhh = ['Whats up with this? -->', ['Woah', 'crazy!']]; 
const emptyArray = [];

To write an array in JavaScript, you use
square brackets [] and comma separate

each value in the array

Introduction

const arr1 = [5, 3, 10];  
console.log(arr1[0]); // should equal 5 
console.log(arr1[1]); // should equal 3 
console.log(arr1[2]); // should equal 10 
console.log(arr1[3]); // should be undefined -- remember, arrays
 //are zero-indexed! 
console.log(arr1[1 + 1]); // the same as arr[2], which is 10 
console.log(arr1[arr1.length - 1]); // shorthand for the last
 //element of an array, in
 //this case 10

To access an element in an array, we specify the
name of the array followed by square brackets

brackets and the position (also called the index)
of the element we're trying to access.

Arrays are zero-indexed, which means that the
first element is accessed at index 0

Accessing and updating array values

const arr2 = [5, 3, 10];  
arr2[0] = -1000;  
arr2[2] = 'dope';  
console.log(arr2); // should be [-1000, 3, 'dope']

To update a value in an array, we can
simply assign an element at a given

index to a new value

Accessing and updating array values

Adding to arrays

const arr3 = [1, 2, 3];  
arr3[3] = 4;  
console.log(arr3); // [1,2,3,4]

There are a number of ways you can add
elements to an array.

One way is by setting a value at a new index in the array.

Adding to arrays

Be careful with this approach

You can add an element at any index, and any
elements that don't have values in them will be

filled with undefined values.

const arr4 = [1, 2, 3];  
arr4[5] = 'whoa';  
console.log(arr4); // [1, 2, 3, undefined, undefined, 'woah']

const arr3 = [1, 2, 3];  
arr3[3] = 4;  
console.log(arr3); // [1,2,3,4]

Adding to arrays

If you want to add to the end of an array, a better
approach is to use the push function

This function returns the new length (the number of
elements) of the array.

const arr5 = [3, 2, 5];  
arr5.push(7); //  
console.log(arr5); // [3, 2, 5, 7]

Adding to arrays

 if you want to add to the beginning of an array, you
can use the unshift function.

As with push, unshift returns the length of the
modified array

const arr6 = [1, 2, 3];  
arr6.unshift(0);  
console.log(arr6); // [0,1,2,3]

Removing from arrays

One (not common) way to remove elements is to
manually set the length of the array to a number

smaller than its current length

const arr7 = [1, 2, 3];  
arr7.length = 2; // set the new length 
console.log(arr7); // [1,2]

Removing from arrays

A more common way to remove elements from
the back of an array is to use pop().

This function works in sort of the opposite way
as push, by removing items one by one from the

back of the array.

Unlike push, however, pop doesn't return the
length of the new array; instead, it returns the

value that was just removed.

const arr8 = [1, 2, 3];  
arr8.pop(); // returns 3 
console.log(arr8); // [1,2]

Removing from arrays

const arr9 = [1, 2, 3];  
arr9.shift(); // returns 1 
console.log(arr9); // [2,3]

If you want to remove an element from the front of an array,
you should shift() (like unshift, but the opposite)

 As with pop(), shift() returns the removed value.

Removing from arrays

const arr10 = [5, 4, 3, 2];  
delete arr10[1];  
console.log(arr10); // [5, undefined, 3, 2]

delete replaces the value at the index where
you delete will by undefined

This usually isn't what you want,
which is why you won't often see

people use delete on array

