Javascript:

B00lean

—X[Pressions



Boolean Logic

- Write conditional logic using boolean operators
- List all of the falsey values in JavaScript

- Use if/else and switch statements to include conditional
logic in your JavaScript code

- Explain the difference between == and === in Javascript

- Convert between data types explicitly in JavaScript



Conditional Logic

-+ An essential part of writing programs is being able to execute code
that depends on certain conditions. For example:

- You want the navigation bar on your website to look different
based on whether or not someone is logged in

If someone enters their password incorrectly, you want to let them
know; otherwise, you want to log them in

»You're building a tic-tac-toe game, and want to know whether it's
X's turn or O's turn

- You're building a social network and want to keep person A from
seeing person B's profile unless the two of them are friends



var instructor = 'Brenda’;

// we begin with an "1f" statement
// followed by a condition in ()

// and a block of code inside of {

if (instructor === 'Brenda') { * Always true
console.log('Yes!"');

} else {
console. log('No');

+

- Notice that we used a === Instead of =.

-+ Anytime that we use more than one equals operator (we can
either use == or ===) we are doing a comparison (comparing
values).

- When we use a single equals operator =, we are doing an
assignment (setting a variable equal to some value).



var favoriteFood = prompt('What\'s your favorite food?');

if (favoriteFood === 'pizza') {
console.log('Woah! My favorite food is pizza too!');
} else {

console. log('That\'s cool. My favorite food is pizza.');
}

In this version, the boolean expression will be true/false
depending on the value entered in ‘prompt’




Difference between “==" and “==="

- Two different operators for comparison: the double and triple
equals.

+  Both operators check whether the two things being compared
have the same value, but there's one important difference.

- == allows for type coercion of the values,

- === does not.

- To understand the difference between these operators, we first
need to understand what is meant by type coercion.



Type Coercion 1

+ Add a number and a string.

In a lot of programming languages,
this would throw an error, but

JavaScript is more
accommodating 5+ 'hi'; // '5hi

It evaluates the expression 5 +
"ni” by first coercing 5 into a string,
and then interpreting the "+°
operator as string concatenation.

S0 it combines the string "5" with
the string "hi" into the string "5hi”



Type Coercion 2

- JavaScript expects the
values inside of
parentheses that come

after the keyword if to be

if ('foo') {
booleans. console. log('this will show up!');
s
Ii in a val
you pass in a valle if (null) {

which is not a boolean, console. log('this won\'t show up!");
JavaScript will coerce the |+
value to a boolean

according to the rules for
truthy/falsey values
(more on this later)



Type Coercion 3

-+ A very common way to coerce
a stringified number back into
a number.

By prefacing the string with
the plus sign, JavaScript will
perform a coercion on the
value and convert it from a
string value to a number value.

+'304'; // 304




“::“ \/S “:::“ again

—— * loose === * strict

== '5': // true === '5': // false
"true' == true:; // false 'true' === true; // false
true == 1, // true true === 1; // false
undefined == null: // true| | lundefined === null; // false
== allows for coercion while === doesn't.

If you don't want to have to think about coercion in your
comparisons, stick to ===.



var x = 4,
if (x <= 5) {
console. log('x is less than or equal to five!');

r else {
console. log('x is not less than or equal to five!');

}

Operator Description
== equal to
=== equal value and equal type

Comparison |~ not equat

Opera’tors == not equal value or not equal type

> greater than
< less than
= greater than or equal to
<= less than or equal to

? ternary operator




Falsey Values

- Some values (aside from
false) are actually false

as well, when they're o Falsey Values in Javascript

used in a context where 5
Javascript expects a

boolean value null
undefined

false

Even it they do not have NaN // (short for not a number)

a "value" of false, these
values will be translated
(or "coerced") to false
when evaluated In a
boolean expression.



Logical Operators

&&

Operator Description

and

or

not

Example

(X <10 && y > 1) is true

(x==5]||y==05)is false

I(x ==y) is true




f-Else

Sometimes you may have more than two conditions to check.

In this case, you can chain together multiple conditions using
else

if (number >= 1000) {

}
}

console. log('Woah, thats a big number!"');

else if (number >= 0) {

console. log('Thats a cool number.');

else {

console. log('Negative numbers?! Thats just bananas.');




Switch

Another way to write conditional logic is to use a switch statement.

While these are used less frequently, they can be quite useful when there are
multiple conditions that can be met.

Notice that each case clause needs to end with a break so that we exit the
switch statement.

switch (feeling) {

case 'happy':
console. log("Awesome, Im feeling happy too!);
break;

case 'sa':
console. log('Thats too bad, I hope you feel better soon.');
break;

case 'hungry':
console. log('Me too, lets go eat some pizza!');
break;

default:

console. log('I see. Thanks for sharing!');




Modulus Operator

5 % 3 === 2 // true (the remainder when five 1s divided by 3 1s 2)
var num = prompt('Please enter a whole number');
if ( num % 2 === 0 ) {
console. log('the num variable is even!"')
} else if ( num % 2 === 1) A
console. log('the num variable 1is odd!"')
} else {

console. log('Hey! I asked for a whole number!');

}




