Playlist Models

Playlist Model

Member Playlist

Song

Entity Classes: Playlist + Song

@Entity
public class Playlist extends Model

{
public String title;
public int duration;

@OneToMany(cascade = CascadeType.ALL)
public List<Song> songs = new ArraylList<Song>();

public Playlist(String title, int duration)
{
this.title = title;
this.duration = duration;
}
}

Playlist

@Entity

public class Song extends Model

{
public String title;
public String artist;
public int duration;

public Song(String title, String artist, int duration)
{

this.title = title;

this.artist = artist;

this.duration = duration;

}
}

Song

Entiry Class: Member

@Entity

public class Member extends Model

{
public String firstname;
public String lastname;
public String email;
public String password;

@0neToMany(cascade = CascadeType.ALL)
public List<Playlist> playlists = new ArrayList<Playlist>();

public Member(String firstname, String lastname, String email, String password)

{

this.firstname = firstname;
this.lastname = lastname;
this.email = email;
this.password = password;

}

public static Member findByEmail(String email)
{

}

return find("email", email).first();

public boolean checkPassword(String password)

{
}

return this.password.equals(password);

}

4 playlist
5 docviewer ~/dev/play-1.5.0/modu
% playlist ~/repos/wit-hdip-comp-s

app
controllers
models
c Member
c Playlist
c Song
views
¢ Bootstrap
conf
= application.conf

1] dependencies.yml
|messages
= routes

Song(sl):
title: Piano Sonata No. 3
artist: Beethoven
duration: 5

Song(s2):
title: Piano Sonata No. 7
artist: Beethoven
duration: 6

Song(s3):
title: Piano Sonata No. 10
artist: Beethoven
duration: 8

Song(s4):
title: Piano Concerto No.
artist: Beethoven
duration: 8

Song(s5):
title: Piano Concertos No.
artist: Beethoven

Playlist(pl):
title: Bethoven Sonatas
duration: 19
songs:
- sl
- s2
- s3

Playlist(p2):
title: Bethoven Concertos
duration: 23
songs:
- s4
- s5

Member(ml):
firstname: homer
lastname: simpson
email: homer@simpson.com
password: secret
playlists:
_pl
_p2

27

17

data.yml

Member

Playlist

Song

Song(sl):
title: Piano Sonata No. 3
artist: Beethoven
duration: 5

Song(s2):
title: Piano Sonata No. 7
artist: Beethoven
duration: 6

Song(s3):
title: Piano Sonata No. 10
artist: Beethoven
duration: 8

Song(s4):
title: Piano Concerto No.
artist: Beethoven
duration: 8

Song(s5):
title: Piano Concertos No.
artist: Beethoven

Playlist(pl):
title: Bethoven Sonatas
duration: 19
songs:
- sl
- 52
- s3

Playlist(p2):
title: Bethoven Concertos
duration: 23
songs:
- s4
- s5

Member(ml):
firstname: homer
lastname: simpson
email: homer@simpson.com
password: secret
playlists:
_pl
_p2

27

17

Logical View

Physical View http://localhost:9000/@db

dec :h2:mem: plam
member

+ B ema|I
+ [firsthame
+ [lasthame
+ || password
+ |4, Indexes
-1 [member_playlist
+ [member_id

+ [playlists_id
+ |49, Indexes

= [playlist
+ [id
+ [duration
+ [title

+ |9, Indexes

-1 [playlist_song
+ [playlist_id
+ [songs_id
+ |9, Indexes
-1 [song
+ 0 id
+ [artist
+ || duration

[fitle
+ |9, Indexes

@ECT * FROM MEMBER; Core M Ode?

ID |[EMAIL FIRSTNAME LASTNAME |PASSWORD
8 | homer@simpson.com homer simpson secret O bJ eCtS
SELECT * FROM PLAYLIST; SELECT * FROM SONG;
ID DURATION |TITLE ID ARTIST DURATION TITLE
6 19 Bethoven Sonatas 1 |Beethoven|5 Piano Sonata No. 3
7 123 Bethoven Concertos 2 |Beethoven 6 Piano Sonata No. 7
' 3 |Beethoven 8 Piano Sonata No. 10
4 Beethoven 8 Piano Concerto No. 27
5

K Beethoven |0 Piano Concertos No. 17 J

SELECT * FROM MEMBER_PLAYLIST:
fl\/lem ber -> Play“St MEMBER _ID |PLAYLISTS_ID w
8 6

mapping table | .

SELECT * FROM PLAYLIST SONG;
PLAYLIST ID |SONGS_ID

Playlist -> Song :
K mapping table ° : J

Manipulating Playlist

public class Dashboard extends Controller

{

public static void index()

{
Member member = Accounts.getLoggedInMember();
List<Playlist> playlists = member.playlists;
render ("dashboard.html", playlists);

I3

public static void addPlaylist (String title)
{
Member member = Accounts.getLoggedInMember();
Playlist playlist = new Playlist (title, 0);
member.playlists.add(playlist);
member.save();
redirect ("/dashboard");

}

public static void deletePlaylist (Long id)
{
Member member = Accounts.getLoggedInMember();
Playlist playlist = Playlist.findById(id);
member.playlists. remove(playlist);
member.save();
playlist.delete();
redirect ("/dashboard");

Display logged In
members playlists

Add a new playlist

Delete a playlist

Manipulating Songs

public class PlaylistCtrl extends Controller
{

public static void index(Long id)

{
Playlist playlist = Playlist.findById(id);
render("playlist.html", playlist);

5

Display a playlist
(given id)

public static void addSong(Long id, String title,
String artist, int duration)
{

Song song = new Song(title, artist, duration);
Playlist playlist = Playlist.findById(id);
playlist.songs.add(song);
playlist.save();
redirect ("/playlists/" + id);

I3

add a song to a
playlist

public static void deletesong (Long id, Long songid)
{
Playlist playlist = Playlist.findById(id);
Song song = Song.findById(songid);
playlist.songs.remove(song);
playlist.save();
song.delete();
render("playlist.html", playlist);

delete a song
from a playlist

