Aurelia Http

Http Clients

-+ Aurelia comes with 2 http client libraries:

- aurelia-http-client - A basic HttpClient based on

XMLHttpRequest. It supports all HT TP verbs, JSONP

and request cancellation.

»aurelia-fetch-client - A more forward-looking HttpClient

based on the Fetch specification. It supports all

TTP

verbs and integrates with Service Workers, including

Request/Response caching.

[MDN it signin o mozilla
NETWORK

WEB TECHNOLOGIES ¥ MOZILLADOCS ~ DEVELOPER TOOLS FEEDBACK ¥ Q

_ MDN Web technology For developers Web APIs Fetch API _
gy P LANGUAGES @ Baa £t

Fetch AP HAQED e

see all contributors

IN THIS ARTICLE +

A Thisis an experimental technology

Because this technology's specification has not stabilized, check the compatibility table for usage in various browsers. Also note that the syntax and behavior
of an experimental technology is subject to change in future versions of browsers as the specification changes.

The Fetch API provides an interface for fetching resources (including across the network). It will seem familiar to anyone who has used
XMLHttpRequest, but the new API provides a more powerful and flexible feature set.

Concepts and usage

Fetch provides a generic definition of Request and Response objects (and other things involved with network requests). This will allow them to

be used wherever they are needed in the future, whether it's for service workers, Cache APl and other similar things that handle or modify
requests and responses, or any kind of use case that might require you to generate your own responses programmatically.

It also provides a definition for related concepts such as CORS and the HTTP origin header semantics, supplanting their separate definitions
elsewhere.

For making a request and fetching a resource, use the GlobalFetch.fetch method. It is implemented in multiple interfaces, specifically Window
and WorkerGlobalScope. This makes it available in pretty much any context you might want to fetch resources in.

The fetch() method takes one mandatory argument, the path to the resource you want to fetch. It returns a promise that resolves to the

aurelia-http-client

- Provides a comfortable interface to the browser's
XMLHttpRequest object.

- Not included in the modules that Aurelia's bootstrapper
installs, since it's completely optional and many apps
may choose to use a different strategy for data retrieval.

- Must install it first...

Installing aurelia-http-client

- Step 1: Install the component via npm

npm install aurelia-http-client -save

- Step 2: Specifically include in Aurelia Build

Script

aurelia_project/aurelia.json

"dependencies”: [

"aure|
"aure]

| 1a-history-browses”,
[1a-http-client”’

"aure]

|1a-1loader”,

donation-client ~/repos/mo(
assets
aurelia_project
environments
generators
tasks
json @Urelia.json
node_modules library roof
scripts
src
resources
services
viewmodels
u o app.html
J51APP.js
s environment.js
4 home.html
=-home.js
s~ Mmain.js
4 hav-bar.html
test
1son -DAbelrc
= .editorconfig
Q .eslintrc.json
@ .gitignore
favicon.ico
5 index.html
son jSCoNfig.json
s+ karma.conf.js
1508 Package.json

Using aurelia-http-client

- Import the client
- Create an instance (or inject it)

- Promises returned from:

- get
import {HttpClient} from 'aurelia-http-client’;
) DUt let client = new HttpClient();
client.get("http://localhost:4000/api/candidates').then(data => {
. pOSt console. log(data.content);
});
- delete

- elc...

DonationService

@inject(Fixtures, EventAggregator, HttpClient)
export default class DonationService {

- Retrieve
candidates &
users from
api server

donations = [];
methods = [];
candidates = [];
users [1;
total 0;

constructor(data, ea, hc) {

this.methods = data.methods;
this.ea = ea;

this.hc = hc;
this.getCandidates();

this.
}

getCandidates() {
this.hc.get('http://localhost:4000/api/candidates').then(res => {
this.candidates = res.content;
1)
¥

getUsers();

getUsers() {
this.hc.get('http://localhost:4000/api/users').then(res => {
this.users = res.content;

});

}

DonationService

donate(amount, method, candidate) {
const donation = {
amount: amount,
method: method
b
this.hc.post('http://localhost:4000/api/candidates/' + candidate._id + '/donations', donation)
.then(res => {
const returnedDonation = res.content;
this.donations.push(returnedDonation);
console. log(amount + ' donated to ' + candidate.firstName + ' ' +
candidate.lastName + ': ' + method);
this.total = this.total + parselInt(amount, 10);
console.log('Total so far ' + this.total);
this.ea.publish(new TotalUpdate(this.total));

});

}
- save in donations array

- Create a

donation I Response I + log it

callback * update total

- post to AP

Server - dispatch event to interested

parties

Cross Origin Requests

A resource makes a cross-origin HT TP request when it

requests a resource from a different domain than the one
which the first resource Iitself serves.

- For example, an HTML page served from http://domain-

a.com makes an src request for http://domain-
b.com/Image.jpg.

- Many pages on the web today load resources like CSS
stylesheets, images and scripts from separate domains.

Restrictions

- For security reasons, browsers restrict cross-origin HT TP
requests Initiated from within scripts.

- XMLHttpRequest follows the same-origin policy.

-+ S0, a web application using XMLHttpRequest could
only make HT TP requests to its own domain.

- To Improve web applications, developers asked browser
vendors to allow cross-domain requests.

Main request: defines origin.

Cross Origin N —

GET / (main page) ; »w
Resource Sharin .
Web server
i domain-a.com
(CO RS) C image.png : -
Same-origin reqUests
(always allowed)
— - T ——._\
GET image.png »__.//
GET webfont.ect :,': Web server
: ™ domain-b.com
Web document

Cross-origin requests N
(controlled by CORS)

The Cross-0rigin Resource Sharing (CORS) mechanism gives web
servers cross-domain access controls, which enable secure cross-

domain data transfers.
Client Server

domain-a.com

ESlmple request
i GET /doc HTTR/1.1
i Origin: Server-b.com

-

HTTP/1.1 200 OK:
Access-Control-Allow-0Origin: *

https://developer.mozilla.org/en-US/docs/Web/HT TP/Access_control_CORS

Cross Origin Request (COR)

These requests to donation-web will fail due to COR restrictions

The server will need some small modifications to permit this

getCandidates() {
this.hc.get('http://localhost:4000/api/candidates’').then(res => {
this.candidates = res.content;
1)
¥

getUsers() {
this.hc.get('http://localhost:4000/api/users').then(res => {
this.users = res.content;
r);
Iy

Hapi Cors Module

“ p m find packages

hapi-cors
Enables cors for a hapijs app based on config.

Default Options:

origins: ['*'],

allowCredentials: 'true’,

exposeHeaders: ['content-type', 'content-length'],
maxAge: 600,

methods: ['POST, GET, OPTIONS'],

headers: ['Accept', 'Content-Type', 'Authorization']

Usage:

var Hapi = require('hapi');

var server = new Hapi.Server();

server.connection({port: 8080});

Unleash awesomeness

Private packages, team management t
powerful integrations. Get started with

npm install hapi-cors

how? learn more

E gabaroar published 11 months a
1.0.1is the latest of 2 releases

github.com/gabaroar/hapi-cors
ISCEY°®

Collaborators list

=

Update to donation-web

Install cors module

npm i1nstall hapil-cors-headers

Index.|s modifications:

const corsHeaders = require('hapi-cors-headers');

server.ext(‘onPreResponse’, corsHeaders);
server.route(require('./routes'));
server.route(require(‘./routesapi'));

