

Cryptography Essentials - Authentication & digital certificates

Objectives

- > Gain understanding of three main ingredients of most security protocols & products
 - > Symmetric encryption (last week)
 - > Public-key cryptography (last week)
 - > Cryptographic hash functions
- > Learn about (public) key management using
 - > Digital certificates

Data Integrity

Data Integrity

- Integrity refers to assurance of non-alteration
- Many systems and components have checksums or cyclic redundancy checks that are designed to detect *accidental* errors, etc.
 - For example, a credit card number contains a digit that is used to verify the others
- But such schemes are not sufficient to prevent *deliberate* modifications

Cryptographic Hash Functions

- Used to provide integrity of a message
- Purpose is to produce a fixed-size *hash-value*:

$$h = H(M)$$

- whereh is the hash valueH is the hash functionM is the message
- Any change in *M*, however small, should produce a different *h*-value

Cryptographic Hash Functions

 Note that a hash function is a many-to-one function.
 Potentially many messages can have the same hash, but finding these should be very difficult

Applications of Hash Functions

As cryptographic checksum

- e.g. to verify software downloads

Applications of Hash Functions

- Authentication
 - It usually makes more sense to sign the hash of a message (with a private key) than to sign the original message
 - This is done with digital certificates and many other authentication schemes

Applications of Hash Functions

- Password storage
 - Store only the hash of password (+ salt)
 - e.g. Unix password scheme

Cryptanalysis: Breaking hash functions

- Strength depends on the length, *n*, in bits of the hash value
- Brute force attacks require time proportional to:
 - one-way property: 2^n
 - weak collisions property: 2ⁿ
 - strong collisions property: $2^{n/2}$
 - This means the ability to find *any* two messages that hash to the same value:

Main Hash Algorithms

- MD5
 - Produces 128-bit hash value (i.e. 64-bit security)
 - Collisions found (2004)
 - No longer recommended for use
- SHA-1
 - Produces 160-bit hash value (80-bit security)
 - Collisions found (2017)
 - No longer recommended for use
- SHA-2
 - Set of 4 hash functions with different size outputs
 - SHA-224, SHA-256, SHA-384, SHA-512
 - Considered safe to use
 - (though new SHA-3 has been established due to concerns over structural similarities with SHA-1)

Authentication

Message Authentication Code (MAC)

- Very similar to Hash Function
- Difference is the use of a key

Basic use of MAC for authentication

Sender and receiver need to have shared secret

<u>Note:</u> The symbol with two vertical bars || means *concatenate*; i.e. join inputs together

Digital Signatures: signing the hash

- Digital signature created by adding a small authentication block to a message
- Often done by taking the hash of the message and encrypt the hash with the sender's private key
- The result is a very compact signature (relative to message size)
- And is just as secure as encrypting the entire message with the sender's private key
 - assuming that a secure hash function is used

Typical Use of Hash Function with Digital Signature

- Just sign the hash
 - much more efficient than signing full message

KR_a: Sender's Private Key KU_a: Sender's Public Key <u>Note</u>: The || symbol means *concatenate*; i.e. join inputs together

Digital Certificates

(Public) Key Management

- **Q.** When you receive a public key, how can you be sure that it is authentic?
- **A.** If the received public key is **digitally signed** by someone whose own public key you have and are sure is correct **and** you trust them to sign keys responsibly.

Digital Certificate – components

- Most important components of a digital certificate:
 - Subject (owner)
 - The name on the certificate i.e. to whom it was issued
 - Subject's public key
 - The purpose of a certificate is to validate the public key of the subject
 - Issuer (Certificate Authority)
 - The identity of entity that signed the certificate
 - Issuer's digital signature
 - Serial number
 - Unique identifier for checking against revocation lists
 - Validity period
 - Start date; expiry date

Chain of trust

- Can build up a chain of trusts with linked digital certificates
- This is the basis of what are known as Public Key Infrastructures (PKIs)

USERTrust RSA Certification Authority
🛏 🛅 TERENA SSL CA 2
→ 🛅 moodle.wit.ie

Verification using chain of trusts

verify their signature

Chain of trust

- The buck must stop somewhere. Ultimately, at the end of the chain, you must trust a public key that is not signed (usually belonging to some recognised "authority").
 - In your browser, this is one of the trusted root certificate authorities

Certificates				×
Intended purpose: <all></all>				~
Intermediate Certification Authorities Trusted Root Certification Authorities Trusted Publ				
Issued To	Issued By	Expiry Date	Friendly Name	^
Baltimore CyberTru Class 3 Public Prima Copyright (c) 1997 DigiCert High Assur Equifax Secure Cer GeoTrust Global CA GlobalSign GTE CyberTrust Glo Hotspot 2.0 Trust	Baltimore CyberTrust Class 3 Public Primary Copyright (c) 1997 Mi DigiCert High Assuran Equifax Secure Certifi GeoTrust Global CA GlobalSign GTE CyberTrust Globa Hotspot 2.0 Trust Ro	12/05/2025 01/08/2028 30/12/1999 10/11/2031 22/08/2018 21/05/2022 18/03/2029 13/08/2018 08/12/2043	DigiCert Baltimor VeriSign Class 3 Microsoft Timest DigiCert GeoTrust GeoTrust Global CA GlobalSign DigiCert Global R Hotspot 2.0 Trus	~
Import Export	Remove		Advan	ced

Certificate Expiry & Revocation

- A Digital Certificate doesn't last for ever
- It normally expires after a certain time and must be renewed
- It may be **revoked**:
 - If the subject's private key is compromised
 - If there is a change in status of the subject
 - If the CA's private key is compromised
- Revoked certificates are placed on a Certificate
 Revocation List (CRL)

Certificate Revocation

- An issue is where to find CRL to check if cert has been revoked
 - One solution is to provide as part of certificate URL pointing to CRL
 - Another solution is
 OCSP (online certificate status protocol) which allows real time queries.
 - Another is to just rely on local list which is refreshed by browser updates (Chrome does this)

