
Mongo Data Modelling



Embed vs References

• A key consideration for the structure of 
documents is the decision to : 

• Embed objects to encapsulate 
relationships 

OR 

• Use object references to encapsulate 
relationships



Embedded Data Models

• Embed related data in a 
single structure or document.  

• Generally known as 
“denormalized” models 

• Allow applications to store 
related pieces of information 
in the same database record.  

• Applications may need to 
issue fewer queries and 
updates to complete 
common operations.



When to use Embedded Models?
• The “contains” relationships between entities (One-to-One 

Relationship) 

• Some one-to-many relationships between entities - particularly 
where the “many” (the child document) always appears in the 
context of the “one” or parent documents. 

• Advantages:  

• Provides better performance for read operations  i.e. a 
request and retrieve related data in a single database 
operation.  

• Possible to update related data in a single atomic write 
operation. 

• Disadvantage: 

• May lead to situations where documents grow uncontrollably. 

E.g. Comment 
Embedded in 

BlogEntry



Object References -> ‘Normalized’ Data Model

• Normalized data 
models describe 
relationships 
using references 
between 
documents.



When to use Normalized Data Model?
• When embedding would result in duplication 

of data but would not provide sufficient read 
performance advantages to outweigh the 
implications of the duplication. 

• To represent more complex many-to-many 
relationships. 

• To model large hierarchical data sets

References can provide more flexibility than 
embedding. However, client-side applications 

must issue follow-up queries to resolve the 
references -> models may require more round 

trips to the server.

E.g. BlogEntry -> User



Model: One-to-Many

• Stories are written by Persons
const mongoose = require('mongoose'); 
const Schema = mongoose.Schema; 

const personSchema = Schema({  
  name: String, 
  age: Number, 
}); 
 
const storySchema = Schema({  
  creator: { type: mongoose.Schema.Types.ObjectId, ref: 'Person' },  
  title: String, 
}); 

StoryPerson



Creating the objects

• Chaining promises 

const Story = mongoose.model('Story', storySchema); 
const Person = mongoose.model('Person', personSchema);  
 
var aaron = new Person({ name: 'Aaron', age: 100 }); 
 
aaron.save().then(newPerson => { 
 
  const story1 = new Story({  
    title: 'Once upon a timex.',  
    creator: newPerson._id,  
  }); 

  return story1.save(); 
 
}).then(newStory => { 

  console.log('Saved!'); 

}); 

{  
  "_id" : ObjectId("57ee63b9ded76fc76f903318"), 
  "name" : "Aaron",  
  "age" : 100,  
  "__v" : 0  
}  
 
{  
  "_id" : ObjectId("57ee63b9ded76fc76f903319"), 
  "title" : "Once upon a timex.",  
  "creator" : ObjectId("57ee63b9ded76fc76f903318"), 
  "__v" : 0  
} 

Created Objects



Model: One-to-Many, 
Many-to-One

const personSchema = Schema({ 
  name: String, 
  age: Number, 
  stories: [{ type: Schema.Types.ObjectId, ref: 'Story' }], 
}); 
 
const storySchema = Schema({  
  creator: { type: mongoose.Schema.Types.ObjectId, ref: 'Person' }, 
  title: String, 
}); 

{  
  "_id" : ObjectId("57ee64b9f764aac77ea465e0"), 
  "name" : "Aaron",  
  "age" : 100,  
  "stories" : [ 
    ObjectId("57ee64b9f764aac77ea465e1")  
  ], 
  "__v" : 1  
}  
 
{  
  "_id" : ObjectId("57ee64b9f764aac77ea465e1"), 
  "title" : "Once upon a timex.",  
  "creator" : ObjectId("57ee64b9f764aac77ea465e0"), 
  "__v" : 0  
} 

Example 
Documents

StoryPerson



const Story = mongoose.model('Story', storySchema);  
const Person = mongoose.model('Person', personSchema); 
 
var aaron = new Person({ name: 'Aaron', age: 100 }); 
 
aaron.save().then(newPerson => { 
 
  const story1 = new Story({  
    title: 'Once upon a timex.',  
    creator: newPerson._id,  
  }); 
 
  return story1.save(); 
 
}).then(newStory => { 
 
  Person.findOne({ name: 'Aaron' }).then(person => { 
 
    person.stories.push(newStory._id);  
    return person.save(); 
  }); 
 
}); 



Users & 
Donations

Reference 
encapsulated as 
email of donor

const donationSchema = mongoose.Schema({ 
  amount: Number, 
  method: String, 
  donor: String, 
}); 

const userSchema = mongoose.Schema({ 
  firstName: String, 
  lastName: String, 
  email: String, 
  password: String, 
}); 



Normalised Users & Donations

Reference 
encapsulated as 
Object Reference 
to donor object

const userSchema = mongoose.Schema({ 
  firstName: String, 
  lastName: String, 
  email: String, 
  password: String, 
}); 

const donationSchema = mongoose.Schema({  
  amount: Number, 
  method: String, 
  donor: { 
    type: mongoose.Schema.Types.ObjectId,  
    ref: 'User',  
  }, 
});



Creating an Object Reference

ID of Homer 
user object



Creating a Normalised Donation

Identify logged in user 

Create new donation object 

Link to logged in user id 

Save the donation object

handler: function (request, reply) { 
  var userEmail = request.auth.credentials.loggedInUser;  
  User.findOne({ email: userEmail }).then(user => { 
    let data = request.payload;  
    const donation = new Donation(data); 
    donation.donor = user._id;  
    return donation.save(); 
  }).then(newDonation => { 
    reply.redirect('/report');  
  }).catch(err => { 
    reply.redirect('/');  
  }); 
},



Object IDs rendered in table



Normalised documents & Population

• There are no joins in MongoDB but sometimes we still 
want references to documents in other collections.  

• Population is the process of automatically replacing the 
specified paths in the document with document(s) from 
other collection(s).  

• We may populate a single document, multiple 
documents, plain object, multiple plain objects, or all 
objects returned from a query.



• Extend table template 
to include full name of 
donor

<tbody>  
  {{#each donations}}  
    <tr>  
      <td> {{amount}} </td>  
      <td> {{method}} </td>  
      <td> {{donor.firstName}} {{donor.lastName}} </td>  
    </tr>  
  {{/each}} 
</tbody> 

handler: function (request, reply) { 
  Donation.find({}).then(allDonations => { 
    reply.view('report', { 
      title: 'Donations to Date',  
      donations: allDonations, 
    }); 
  }).catch(err => { 
    reply.redirect('/'); 
  }); 
},

• Default behaviour 
is for find to 
return only return 
ids in place of 
donor

{  
  "_id" : ObjectId("57ee67fd35821864c10344a5"), 
  "donor" : ObjectId("57ed30729b9a6b11bad56dc7"), 
  "amount" : 1000,  
  "method" : "paypal",  
  "__v" : 0  
} 



Mongoose Populate Method

• Populated paths are no longer set to their original _id , their value is 
replaced with the mongoose document returned from the database 
by performing a separate query before returning the results.

{  
  "_id" : ObjectId("57ee67fd35821864c10344a5"), 
  "donor" : { 
    "_id" : ObjectId("57ed30729b9a6b11bad56dc7"), 
    "firstName" : "Homer",  
    "lastName" : "Simpson",  
    "email" : "homer@simpson.com",  
    "password" : "secret",  
    "__v" : 0  
  }  
           
  "amount" : 1000,  
  "method" : "paypal",  
  "__v" : 0  
} 

handler: function (request, reply) { 
  Donation.find({}).populate('donor').then(allDonations => { 
    reply.view('report', { 
      title: 'Donations to Date',  
      donations: allDonations, 
    }); 
  }).catch(err => { 
    reply.redirect('/'); 
  }); 
}, 



<tbody>  
  {{#each donations}}  
    <tr>  
      <td> {{amount}} </td>  
      <td> {{method}} </td>  
      <td> {{donor.firstName}} {{donor.lastName}} </td>  
    </tr>  
  {{/each}} 
</tbody> 

handler: function (request, reply) { 
  Donation.find({}).populate('donor').then(allDonations => { 
    reply.view('report', { 
      title: 'Donations to Date',  
      donations: allDonations, 
    }); 
  }).catch(err => { 
    reply.redirect('/'); 
  }); 
}, 


