
Setting up Mongo

MongoDB

• MongoDB is an open-source
document database that provides
high performance, high
availability, and automatic scaling.

• A record in MongoDB is a
document, which is a data
structure composed of field and
value pairs.

• MongoDB documents are similar
to JSON objects.

• The values of fields may include
other documents, arrays, and
arrays of documents.

• Documents (i.e. objects)
correspond to native data types in
JavaScript

• Embedded documents and arrays
reduce need for expensive joins.

• Dynamic schema supports fluent
polymorphism.

“Mongoose provides a straight-forward, schema-
based solution to model your application data. It
includes built-in type casting, validation, query

building, business logic hooks and more, out of the
box”

Why Mongoose?

• Node focussed Object Document
Manager Mongo & Node

• Can simplify MongoDB development,
particularly as a learning tool for first
contact with Mongo

• Re-introduces Schema to node, and
simplifies considerably evolution of
moderately complex applications.

• Can be viewed as an easier ‘way into’
mongo, but understanding and
familiarity with MongoDB
documentation still required.

Learning Mongo via Mongoose

• Shortcut to understanding the basics

• Closer to Object Relational Mapping libraries like JPA/
Hibernate

• Will require deeper understanding of core Mongo API
at a later stage, but Mongoose First is a useful
approach for now.

Setup (1)

• Install MongoDB

• Launch Mongo

• This will log event to the console and serves as a useful
check on the status of the service

Setup (2)

• Install RoboMongo

• A visual too for exploring and
manipulation MongoDB Databases

Setup (3)

• Launch
Robomongo and
connect to the
database you
have already
started

• Default may be
localhost:27017

Node & Mongoose

• mongoose
package is our
primary gateway
to mongodb

• Packages
includes
complete API for
our purposes

package.json

Connecting to Mongo (via Mongoose)

import mongoose

reset the ‘promise’ library

declare the connection string

connect to the database

Log success/fail/disconnect

'use strict';  
 
const mongoose = require('mongoose'); 
mongoose.Promise = global.Promise;  
 
let dbURI = 'mongodb://localhost/donation';  
if (process.env.NODE_ENV === 'production') { 
 dbURI = process.env.MONGOLAB_URI; 
}  
 
mongoose.connect(dbURI); 
 
mongoose.connection.on('connected', function () { 
 console.log('Mongoose connected to ' + dbURI);  
}); 
 
mongoose.connection.on('error', function (err) { 
 console.log('Mongoose connection error: ' + err); 
}); 
 
mongoose.connection.on('disconnected', function () { 
 console.log('Mongoose disconnected'); 
}); 

{

db.js

• Trigger
connection just
by importing
db.js from index

• Note mongoldb
log connection
message

• ..and
application log

...
require('./app/models/db');  
...

index.js

