
Callbacks & Promises
https://bitsofco.de/javascript-promises-101/

Promises

• A JavaScript Promise represents the result of an
operation that hasn't been completed yet, but will at
some undetermined point in the future.

• An example of such an operation is a network request.

• When we fetch data from some source, for example an
API, there is no way for us to absolutely determine when
the response will be received.

Callback Hell
• This can be problematic if we have

other operations dependent on the
completion of this network request.

• Without Promises, we would have
to use callbacks to deal with
actions that need to happen in
sequence.

• This isn't necessarily a problem if
we only have one asynchronous
action.

• But if we need to complete
multiple asynchronous steps in
sequence, callbacks become
unmanageable and result in the
infamous callback hell.

Promise Invocation Pattern

• Promises provide a standardised and cleaner method of
dealing with tasks that need to happen in sequence.

Using Promises (implicit)

• To execute a
promisified function,
we can call it like any
regular function.

• Because it is returns a
promise, we now have
access to the .then()
and .catch() methods,
which indicate
success and error
results.

Using Promises (explicit)

• Can also capture the promise, and explicitly trigger
then() and catch() subsequently

const promise = get(url); 
 
promise.then(function (response) { 
 /* successFunction */
 
}); 
 
promise.catch(function (err) { 
 /* errorFunction */
 
});

Promise Chaining

• The real value in promises
is when we have multiple
asynchronous functions we
need to execute in order.

• We can chain .then()
and .catch() together to
create a sequence of
asynchronous functions.

• We do this by returning
another promise within a
success or error function

get(firstUrl).then(function (response) { 
 
 response = JSON.parse(response); 
 var secondURL = response.data.url;  
 return get(secondURL);  
 /* Return another Promise */ 
 
}).then(function (response) { 
 
 response = JSON.parse(response); 
 var thirdURL = response.data.url;  
 return get(thirdURL); 
 /* Return another Promise */ 
 
}).catch(function (err) { 
 
 handleError(err); 
 
});

Chaining with Arrow Functions

get(firstUrl).then(function (response) { 
 
 response = JSON.parse(response); 
 var secondURL = response.data.url;  
 return get(secondURL);  
 /* Return another Promise */ 
 
}).then(function (response) { 
 
 response = JSON.parse(response); 
 var thirdURL = response.data.url;  
 return get(thirdURL); 
 /* Return another Promise */ 
 
}).catch(function (err) { 
 
 handleError(err); 
 
});

get(url).then(response => { 
 
 response = JSON.parse(response); 
 var secondURL = response.data.url;  
 return get(secondURL);  
 /* Return another Promise */ 
 
}).then(response => { 
 
 response = JSON.parse(response); 
 var thirdURL = response.data.url;  
 return get(thirdURL); 
 /* Return another Promise */ 
 
}).catch(err => { 
 
 handleError(err); 
 
});

arrow functions

get(url).then(response => { 
 
 response = JSON.parse(response); 
 var secondURL = response.data.url;  
 return get(secondURL); 
 /* Return another Promise */ 
 
}).then(response => { 
 
 response = JSON.parse(response); 
 var thirdURL = response.data.url;  
 return get(thirdURL); 
 /* Return another Promise */ 
 
}).catch(err => { 
 
 handleError(err); 
 
});

nested callbacks

chained promises

