Lab 06 Exercise Solutions

Exercise 1: Register Users

As well as storing the donations in the server bound objects:

server.bind({
donations: [],

s
Try also storing a list of users - in a similar manner to to the donations:

server.bind({

users: [],
donations: [],
};

Using the donations controller as a guide, see if you can populate this array with new users as
they are registered. You will need to write a new route for the signup form:

{ method: 'POST', path: '/register', config: Accounts.register },
and a matching handler:

exports.register = {
handler: function (request, reply) {
reply.redirect(’'/home’);
}s

-

Exercise 2: Current User

Try also to keep track of the current user:

server.bind({
currentUser : {},
users: [],
donations: [],

};
Adjust your login controller to update this field.

On the report - include an extra column - donor

- which should list the name of the donor (the user who is currently logged in),

Solution - declare server bound objects + route

index.js

server.bind({
currentUser: {},
users: {},
donations: [],

DK

routes.js

{ method: 'POST', path: '/register', config: Accounts.register },

Store users as an Object, rather than an array.

This object will contain multiple ‘user’ objects, keyed
using the email of each new user object.

Solution - preload users

initUsers an object literal

It contains 2 name/value pairs

- Name Is an emall of a user
Value Is an object

server users initialised with
iINitUsers

const initUsers = {
'bart@simpson.com’': {
firstName: 'bart’',
lastName: 'simpson’,
email: 'bart@simpson.com’,
password: ‘secret’,
}
'lisa@simpson.com': {
firstName: 'lisa’,
lastName: 'simpson’,
email: 'lisa@simpson.com’,
password: ‘secret’,
}
b

server.bind({
currentUser: {},
users: initUsers,
donations: [],

});

server.bind({
currentUser: {},
users: {},

Solution - implement register | donations:],

)

app/controllers/accounts.js

exports.register = {

handler: function (request, reply) {
const user = request.payload;
this.users[user.email] = user;
reply.redirect('/login');

¥,
= this = Object
- = currentUser = Object
:= donations = Array[0]
= users = Object

+ ‘users’ defined as a server-bound B homer@simpsan.com = Ohjest

email = "homer@simpson.com"
ObJeC't firstName = "homer"
lastName = "simpson"
password = "secret”
= _proto__ = Object
= marge@simpson.com = Object
email = "marge@simpson.com"
firstName = "marge"
lastName = "simpson"
password = "secret”
= _proto__ = Object
= proto__ = Object
= _proto__ = Object

+ Insert new User objects, keyed
by the new users emall

Solution 3 - implement authenticate, storing
current user

exports.authenticate = {

handler: function (request, reply) {
const user = request.payload;
1f ((user.email in this.users) && (user.password === this.users[user.email].password)) {
this.currentUser = this.users[user.email];
reply.redirect('/home');
} else {
reply.redirect('/signup’');
}
},

-

Looking up a user simplified (not need to iterate through
an array)

Reach directly into the users object, using the key (email)
field

Solution 4 - have donate record donor (current user)

app/controllers/donations.js —

exports.donate = {

handler: function (request, reply) {
let data = request.payload;
data.donor = this.currentUser;
this.donations.push(data);
reply.redirect('/report');

},

|

app/views/partials/donationlist.hbs

<tr>
<th>Amount</th>
<th>Method donated</th>
<th>Donor</th>

</tr>

<tr>

<td> {{amount}} </td>

<td> {{method}} </td>

<td> {{donor.firstName}} {{donor.lastName}} </td>
</tr>

JavaScript Skills - FreeCodeCamp

O ® (<] # freecodecamp.com & th) +
|

f‘reeCodeCamp(ﬁ) Map Chat Forum About Shop Signin

Learn to code and help nonprofits

©® © @

17,000,000+ coding challenges $1,000,000+ in donated 2,000+ people like you now have
solved development work developer jobs
Start coding (it's free)

As featured in:

migem [N Xme. lifehacker TIME QUARTZ

Launch your developer career

JavaScript Programming

Large proportion of
curriculum devoted to
javascript skills

Front End
Development
contains excellent
JavaScript practice
poroblems/solutions

Course Map

Front End Development Certification
Data Visualization Certification

Back End Development Certification
Video Challenges

Open Source for Good

Coding Interview Preparation

Front End Development

5 sections - 162 hours of
practice

Basic Javascript

Object Oriented &
Functional Programming

Basic Algorithm Scripting

Intermediate Algorithm
Scripting

Advanced Algorithm
Scripting

\ A A A A 4

» Front End Development Certification

v

v

HTMLS5 and CSS

Responsive Design with Bootstrap

jQuery

Basic Front End Development Projects

Basic JavaScript

Object Oriented and Functional Programming

Basic Algorithm Scripting

JSON APIs and Ajax

Intermediate Front End Development Projects

Intermediate Algorithm Scripting

Advanced Algorithm Scripting

Advanced Front End Development Projects

Claim Your Front End Development Certificate

Basic Javascript (1)

- 10 hours

Comment your JavaScript Code

Declare JavaScript Variables

Storing Values with the Assignment Operator
Initializing Variables with the Assignment Operator
Understanding Uninitialized Variables
Understanding Case Sensitivity in Variables

Add Two Numbers with JavaScript

Subtract One Number from Another with JavaScript

Multiply Two Numbers with JavaScript

Divide One Number by Another with JavaScript
Increment a Number with JavaScript

Decrement a Number with JavaScript

Create Decimal Numbers with JavaScript

Multiply Two Decimals with JavaScript

Divide one Decimal by Another with JavaScript
Finding a Remainder in JavaScript

Compound Assignment With Augmented Addition

Compound Assignment With Augmented
Subtraction

Compound Assignment With Augmented
Multiplication

Compound Assignment With Augmented Division
Convert Celsius to Fahrenheit

Declare String Variables

Escaping Literal Quotes in Strings

Quoting Strings with Single Quotes

Escape Sequences in Strings

Concatenating Strings with Plus Operator

Concatenating Strings with the Plus Equals

Operator
Constructing Strings with Variables
Appending Variables to Strings

- 1 11 s al ” P~y .

Use Bracket Notation to Find the First Character in
a String

Understand String Immutability

Use Bracket Notation to Find the Nth Characterina
String

Use Bracket Notation to Find the Last Character in a
String

Use Bracket Notation to Find the Nth-to-Last

Character in a String
Word Blanks

Store Multiple Values in one Variable using

JavaScript Arrays

Nest one Array within Another Array
Access Array Data with Indexes

Modify Array Data With Indexes

Access Multi-Dimensional Arrays With Indexes
Manipulate Arrays With push()

Manipulate Arrays With pop()

Manipulate Arrays With shift()

Manipulate Arrays With unshift()

Shopping List

Write Reusable JavaScript with Functions
Passing Values to Functions with Arguments
Global Scope and Functions

Local Scope and Functions

Global vs. Local Scope in Functions

Return a Value from a Function with Return
Assignment with a Returned Value

Stand in Line

Understanding Boolean Values

Use Conditional Logic with If Statements
Comparison with the Equality Operator
Comparison with the Strict Equality Operator

Comparison with the Inequality Operator

Basic Javascript (2)

N
|
-

l/‘\
_/

Comparison with the Strict Inequality Operator

Comparison with the Greater Than Operator

Comparison with the Greater Than Or Equal To
Operator

Comparison with the Less Than Operator

Comparison with the Less Than Or Equal To
Operator

Comparisons with the Logical And Operator
Comparisons with the Logical Or Operator
Introducing Else Statements

Introducing Else If Statements

Logical Order in If Else Statements
Chaining If Else Statements

Golf Code

Selecting from many options with Switch

Statements

Adding a default option in Switch statements
Multiple Identical Options in Switch Statemer
Replacing If Else Chains with Switch
Returning Boolean Values from Functions
Return Early Pattern for Functions

Counting Cards

Build JavaScript Objects

Accessing Objects Properties with the Dot Og
Accessing Objects Properties with Bracket N¢
Accessing Objects Properties with Variables
Updating Object Properties

Add New Properties to a JavaScript Object
Delete Properties from a JavaScript Object
Using Objects for Lookups

Testing Objects for Properties

Manipulating Complex Objects

Accessing Nested Objects

Accessing Nested Arrays

Record Collection

Iterate with JavaScript For Loops

Iterate Odd Numbers With a For Loop

Count Backwards With a For Loop

Iterate Through an Array with a For Loop

Nesting For Loops

Iterate with JavaScript While Loops

Profile Lookup

Generate Random Fractions with JavaScript
Generate Random Whole Numbers with JavaScript
Generate Random Whole Numbers within a Range
Sift through Text with Regular Expressions

Find Numbers with Regular Expressions

Find Whitespace with Regular Expressions

Invert Regular Expression Matches with JavaScript

Basic Javascript

Manipulate Arrays With push

An easy way to append data to the end of an array is via
the push() function.

.push() takesoneor more parameters and "pushes"
them onto the end of the array.
var arr = [1,2,3];

arr.push(4);
// arr is now [1,2,3,4]

Instructions

Push ["dog", 3] ontotheendofthe myArray
variable.

‘ Run tests (ctrl + enter) ’

[Reset Help Bug]

Your output will go here.
Any console.log() -type
statements will appear in

your browser's DevTools
JavaScript console as well.

Q myArray should now equal [["John",
23], ["cat", 2], ["dog", 3]] .

ourArray = ["Stimpson", "J", "cat"];
ourArray.push(["happy", "joy"]);

myArray = [["John", 23], ["cat", 2]];

1
2
3
4
5
6
7
8
9

Object Oriented & Functional Programming

- 2 hours

v Object Oriented and Functional Programming

Declare JavaScript Objects as Variables
Construct JavaScript Objects with Functions

Make Instances of Objects with a Constructor

Function

Make Unique Objects by Passing Parameters to our

Constructor

Make Object Properties Private
Iterate over Arrays with .map
Condense arrays with .reduce
Filter Arrays with .filter

Sort Arrays with .sort

Reverse Arrays with .reverse
Concatenate Arrays with .concat
Split Strings with .split

Join Strings with .join

—Xample

Manipulate Arrays With push

ourArray = ["Stimpson", "J", "cat"];
ourArray.push(["happy", "joy"1);

An easy way to append data to the end of an array is via
the push() function.

myArray = [["John", 23], ["cat", 2]];

1
2
3
4
5
6
7
8
9

.push() takesoneor more parameters and "pushes"
them onto the end of the array.

var arr = [1,2,3];
arr.push(4);
// arr is now [1,2,3,4]

Instructions

Push ["dog", 3] ontotheendofthe myArray

variable.

‘ Run tests (ctrl + enter) ’
[Reset Help Bug]

Your output will go here.
Any console.log() -type

statements will appear in
your browser's DevTools
JavaScript console as well.

0 myArray should now equal [["John",
23], ["cat", 2], ["dog", 3]].

Basic Algorithm Scripting

- 50 Hours

v Basic Algorithm Scripting

l,——\l
/

Get Set for our Algorithm Challenges
Reverse a String *

Factorialize a Number *

Check for Palindromes *

Find the Longest Word in a String *
Title Case a Sentence *

Return Largest Numbers in Arrays *
Confirm the Ending *

Repeat a string repeat a string *
Truncate astring *

Chunky Monkey *

Slasher Flick *

Mutations *

#*

Falsy Bouncer

O 00 0000000000 000

Seek and Destroy *
Wheredo | belong *

N\
/)

*

l,——\l
/

Caesars Cipher

—Xample

Chunky Monkey @

chunkArrayInGroups(arr, size) {

arr;
Write a function that splits an array (first argument) into
groups the length of size (second argument) and returns
them as a two-dimensional array.

chunkArrayInGroups(["a", "b", "c", "d"], 2);

1
2
3
4
5}
6
7
8

Remember to use Read-Search-Ask @ if you get stuck.
Write your own code.

Here are some helpful links:

* Array.prototype.push()

e Array.prototype.slice()

‘ Run tests (ctrl + enter) ’

[Reset Help Bug]

Your output will go here.
Any console.log() -type

statements will appear in
your browser's DevTools
JavaScript console as well.

v Intermediate Algorithm Scripting

*

Sum All Numbers in a Range

Intermediate Algorithm Scripting

Diff Two Arrays *

Roman Numeral Converter *

*

Wherefore art thou

- 50 Hours

*

O 00 00O

Search and Replace

N
/)

Pig Latin *
DNA Pairing *

Missing letters *

O 0 0O

Boowho *

N
/)

Sorted Union *

N\
./

Convert HTML Entities *

-

N
/)

Spinal Tap Case
() Sum All Odd Fibonacci Numbers *

*

0 Sum All Primes

*

) Smallest Common Multiple

*

) Finders Keepers
) Dropit *
(0 Steamroller *
(0 Binary Agents *

O Everything Be True *

) Arguments Optional *

—Xample

DNA Pairing @ pairElement(str) {

str;

The DNA strand is missing the pairing element. Take each
character, get its pair, and return the results as a 2d array.

}
p

airElement("GCG");

Base pairs @ are a pair of AT and CG. Match the missing
element to the provided character.

Return the provided character as the first element in each
array.

For example, for the input GCG, return [["G", "C"], ["C""G"],
[IIGII, "C"]]

The character and its pair are paired up in an array, and all
the arrays are grouped into one encapsulating array.

Remember to use Read-Search-Ask @ if you get stuck. Try
to pair program. Write your own code.

Here are some helpful links:
e Array.prototype.push()

e String.prototype.split()

‘ Run tests (ctrl + enter) ’

Y

Reset Help Bug]

Your output will go here.
Any console.log() -type

your browser's DevTools
JavaScript console as well.

*/

*
*
* statements will appear in
*
*

Advanced Algorithm Scripting

- 50 Hours

v Advanced Algorithm Scripting

) Validate US Telephone Numbers
) Symmetric Difference

' Exact Change

' Inventory Update

' Norepeats please

' Friendly Date Ranges

' Make a Person
) Map the Debris

. Pairwise

—Xample

Exact Change

Design a cash register drawer function

checkCashRegister() thataccepts purchase price as
the first argument (price), payment as the second
argument (cash), and cash-in-drawer (cid) as the
third argument.

cid isa 2D array listing available currency.

Return the string "Insufficient Funds" if cash-in-
drawer is less than the change due. Return the string
"Closed" if cash-in-drawer is equal to the change due.

Otherwise, return change in coin and bills, sorted in
highest to lowest order.

Remember to use Read-Search-Ask @ if you get stuck.
Try to pair program. Write your own code.

Here are some helpful links:

* Global Object

‘ Run tests (ctrl + enter)

[Reset Help Bug

Your output will go here.
Any console.log() -type
statements will appear in

your browser's DevTools
JavaScript console as well.

/

1l
2
3
4
5
6
7
8
9

checkCashRegister(price, cash,
change;

change;

-

checkCashRegister(19.50, 20.00, [["PENNY", 1.01], ["NICKEL",
["QUARTER", 4.25], ["ONE", 96.00], ["FIVE", 55.00], ["TEN", 2
["ONE HUNDRED", 1060.00]1);

2.05],
0.00],

["DIME", 3.10],
["TWENTY", 60.60],

