
HAPI Building Blocks



Example Hapi Application Structure



Convention over Configuration

Reasonable defaults 
Only specify the unconventional bits 
Reduce number of decisions to be made 
Eliminate distractions



Convention over Configuration

https://en.wikipedia.org/wiki/Convention_over_configuration



play new

Convention over Configuration in Play 1

Generates a complete working web 
app 

Considerable range of defaults already 
configured to ‘just work’ 

Default can be changed by 



Convention over Code - Example

const bean = require('jellybean');  
 
bean.setName('Coffee'); 
bean.setColor('brown'); 
bean.setSpeckles(false);

const bean = require(‘jellybean’); 

const options = { 
  name: 'Tutti Frutti',  
  color: 'mixed',  
  speckles: true 
}; 
 
bean.config(options);

• Verbose - 3 method calls on 
the bean object to configure 
the jellybean.  

• Configuration part of the 
program logic

• config method takes options argument 

• More flexible because it separates the 
configuration from the code  

• Place all the configurations of 
jellybeans in a separate file and include 
them.  

• To change the configurations later just 
update the config. 



Hapi Building Blocks

1. Server 

2. Routes 

3. Connections 

4. Handlers 

5. Plugins



Server

• A server is the 
container for the hapi 
application.  

• All other Hapi objects 
are created or used in 
the context of a server.  

• A hapi server doesn’t 
directly listen on a 
network port.  

• Make connections 
from your server so the 
app can speak to the 
outside world. 

'use strict';  
 
const Hapi = require('hapi'); 
 
var server = new Hapi.Server(); 
server.connection({ port: process.env.PORT || 4000 }); 
 
server.start(err => { 
  if (err) { 
    throw err; 
  } 
 
  console.log('Server listening at:', server.info.uri);  
}); 

index.js



Routes

• Routes in hapi are a 
way of telling the 
framework that 
you’re interested in 
certain types of 
request.  

• Create a route with 
a set of options, 
including the HTTP 
verb (such as GET, 
POST) and path (for 
example /about) 
that you wish to 
respond to, and add 
it to a server. 

const Controller = require('./controller.js'); 
 
module.exports = [ 
 
  { method: 'GET', path: '/', config: Controller.index }, 
 
];

routes.js



Connection

• Use connections to 
attach a hapi server 
to a network 
interface,  

• It can start 
accepting incoming 
requests on this 
interface 

• Connections allow 
a single hapi server 
listen on multiple 
ports

'use strict';  
 
const Hapi = require('hapi'); 
 
var server = new Hapi.Server(); 
server.connection({ port: process.env.PORT || 4000 }); 
 
server.start(err => { 
  if (err) { 
    throw err; 
  } 
 
  console.log('Server listening at:', server.info.uri);  
}); 

index.js



'use strict';  
 
const Hapi = require('hapi'); 
 
var server = new Hapi.Server(); 
server.connection({ port: process.env.PORT || 4000 }); 
 
server.start(err => { 
  if (err) { 
    throw err; 
  } 
 
  console.log('Server listening at:', server.info.uri);  
}); 

index.js

Connection but no 
Routes Configured



Configuring Routes

• When a new request 
arrives at the server, 
hapi will attempt to 
find one of the 
routes that matches 
the request.  

• If it successfully 
pairs up the request 
with one of your 
routes, it will look to 
your route handler 
for how to handle 
the request. 

const Controller = require('./controller.js'); 
 
module.exports = [ 
 
  { method: 'GET', path: '/', config: Controller.index }, 
 
];

routes.js

'use strict';  
 
const Hapi = require('hapi'); 
 
var server = new Hapi.Server(); 
server.connection({ port: process.env.PORT || 4000 }); 
 
server.route(require('./routes')); 
 
server.start(err => { 
  if (err) { 
    throw err; 
  } 
 
  console.log('Server listening at:', server.info.uri);  
});

index.js



Starting the Server

• server.start called 
when server is 
launched. 

• If there us an error on 
startup, error details 
passed in ‘err’ 
parameter. 

• If no error, the server 
is running, awaiting 
requests and 
dispatching to 
handlers based on the 
installed routes

'use strict';  
 
const Hapi = require('hapi'); 
 
var server = new Hapi.Server(); 
server.connection({ port: process.env.PORT || 4000 }); 
 
server.route(require('./routes')); 
 
server.start(err => { 
  if (err) { 
    throw err; 
  } 
 
  console.log('Server listening at:', server.info.uri);  
});

index.js



Handlers

• Handlers are the way to tell 
hapi how it should respond to 
an HTTP request.  

• A handler can take several 
forms.  

• The simplest handler is defined 
as a JavaScript function with 
access to a request object and 
a reply interface.  

• The request object provides 
details about the request.  

• Use the reply interface to 
respond to the request

exports.index = { 
 
  handler: function (request, reply) { 
    reply('Hello!'); 
  } 
 
};

controller.js

const Controller = require('./controller.js'); 
 
module.exports = [ 
 
  { method: 'GET', path: '/', config: Controller.index }, 
 
];

routes.js



exports.index = { 
 
  handler: function (request, reply) { 
    reply('Hello!'); 
  } 
 
};

controller.js

'use strict';  
 
const Hapi = require('hapi'); 
 
var server = new Hapi.Server(); 
server.connection({ port: process.env.PORT || 4000 }); 
 
server.route(require('./routes')); 
 
server.start(err => { 
  if (err) { 
    throw err; 
  } 
 
  console.log('Server listening at:', server.info.uri);  
});

index.js

const Controller = require('./controller.js'); 
 
module.exports = [ 
 
  { method: 'GET', path: '/', config: Controller.index }, 
 
];

routes.js

1. Servers 

2. Connections 

3. Routes 

4. Handlers

1

4
3

3
2

1

4



Hapi Request Handing 

Connection -> Server -> Route -> Handler







Plugins

• Plugins are a way of extending servers with new functionality.  

• Plugins can extend a server with some global utility such as logging 
all requests or adding caching to responses.  

• There are many existing plugins available as npm packages that deal 
with things like authentication and logging, written by the hapi core 
team and community.  

• It’s also possible to create your own plugins that divide your 
application into smaller logical chunks that are easier to maintain or 
even replace or remove altogether at a later date. 



Plugins Example

• Logging: good 

• good is a hapi plugin to 
monitor and report on a 
variety of hapi server events 
as well as ops information 
from the host machine.  

• It listens for events emitted 
by hapi server instances and 
pushes standardized events 
to a collection of streams.

$ npm install good 
$ npm install good-console



Plugin Configuration & Registration

• Plugins often 
take their 
configuration 
as an object, 
specifying 
various feature 
initial values 

• Plugins are 
then registered 
- and only 
when this is 
complete is the 
service started

const Hapi = require('hapi'); 
const server = new Hapi.Server(); 
server.connection({ port: process.env.PORT || 4000 }); 
 
const options = { 
  ops: { 
    interval: 10000 
  },  
  reporters: { 
    myConsoleReporter: [{ 
      module: 'good-console' 
    }, 'stdout']  
  } 
};  
 
server.register({ register: require('good'), options, }, (err) => { 
  if (err) { 
    throw err; 
  } 
 
  server.route(require('./routes')); 
 
  server.start((err) => { 
    if (err) { 
      throw err; 
    } 
 
    console.log('Server listening at:', server.info.uri); 
  }); 
 
});

index.js



Good Logging 


