
Node Essentials

https://nodesource.com/resources/whitepapers/nodesource-stateofnode.pdf

Scope

• JavaScript on the Server

• Asynchronous Programming

• Module-driven Development

• Small Core, Vibrant Ecosystem

• The ‘Frontend Backend’

JavaScript on the Server

• Large JavaScript developer community already
building sophisticated web applications.

• JavaScript consistently ranks among the most
popular languages. JavaScript seen as
approachable (“Developer joy”)

• JavaScript on the server with Node further
establishes it as the language of the web.

• Its new uses on the server are helping to shape
the future of the language itself.

Asynchronous Programming I

• JavaScript was designed for the web and the browser, where nothing
is synchronous.

• Asynchronous JavaScript programs can perform many complex,
parallel tasks in the browser.

• Node takes asynchronicity to the extreme on the server, making it the
perfect choice for I/O-heavy and highly concurrent applications.

• Applications built with Node are built for predictable scalability - design
patterns adopted within Node programmes confer robust scalability
without the overhead required by complicated synchronization
mechanisms

Asynchronous Programming II
• Node requires developers to

embrace a different mindset in
the form of asynchronous
programming

• By treating I/O as a special class
of operation, developers must
design highly performant
applications by default.

• Node is single-threaded by
nature, which is embraced as a
part of the application design.

Module-driven Development I

• Node is modular by nature.

• Node embraces a practice of “Throw-awayability” becoming pervasive in
the services oriented software design world - i.e. encourage developers to
think in terms of creating small services that can be easily replaced or
updated when necessary.

• By adopting a module-driven approach, Node developers can
deconstruct the functionality of large monolithic applications and redesign
them as a series of Node modules, bundled together to form a collection
of services.

• This establishes an elegant simplicity in building scalable application
functionality that improves both business and developer agility and leads
to greater code-reuse.

Module-driven Development II

• Having development teams focusing on developing modules
enables them to:

• 	 Maintain focus on essential functionality  

• 	 Better test, validate and document that functionality  

• 	 More easily share and collaborate with other teams  

Small Core, Vibrant
Ecosystem

• Large monolithic applications are often subject to “mission creep” of
applications and the development environments that build them. Over
time this results in feature rich but bloated products.

• Node avoids this scenario by creating a small core of essential
functionality that is studiously defended and constantly debated by the
Node community. This pushes experimentation to the edges and
encourages a vibrant ecosystem and development culture.

• This ethos also extends to Node- style development, with developers
constantly thinking about how to keep modules small and focused
and splitting apart functionality where the “do one thing well” rule is
broken.

Traditional Frontend / Backend

The “Frontend Backend”

• Rich client teams who have been building exciting, dynamic
JavaScript experiences have run up against problems from
building large, monolithic structures that naturally result from
traditional top-down programming.

• The result is poor performance and scalability and frustration
for end users.

• Front end-developers must also rapidly iterate on the
customer experience to keep users engaged.

• This has lead to the growth if the ‘Frontend Backend’ pattern,
with node as a clear choice.

The Frontend Backend

• The application frontend needs a lightweight,
dynamic back-end to deliver the scale and
response times needed.

• The Frontend Backend is architectural tier
added to a system to specifically serve
frontend resources (templates, html, css , etc.)
in front of a legacy system or API service tier.

• A frontend backend empowers frontend
teams to quickly evolve the user experience to
respond to rapidly changing conditions on the
ground – such as news items, social
happenings, and sporting or cultural events –
all while being able to think and operate in the
familiar JavaScript mindset.

